Secretome of the carcinogenic helminth Spirocerca lupi reveals specific parasite proteins associated with its different life stages

Rojas, A., et al. Secretome of the carcinogenic helminth Spirocerca lupi reveals specific parasite proteins associated with its different life stages, Veterinary Parasitology, 10.1016/j.vetpar.2019.108935

Spirocerca lupi is a parasitic and carcinogenic nematode of canids distributed in tropical and subtropical regions around the world. The excretion-secretion proteins (PES) of S. lupi have been suggested to play a role in the pathogenesis of its infection. We aimed to identify the PES of different stages of S. lupi and search for proteins that would be useful for diagnostic, therapeutic and vaccination purposes as well as understand their functions. A nano-UPLC mass spectrometry de novo analysis was performed on proteins collected from cultures of S. lupi L3 larvae, L4 females, adult females and adult males from naturally infected hosts. A total of 211 proteins were identified in all cultures. Accordingly, 117, 130, 99 and 116 proteins were detected in L3 larva, L4 females, adult females and adult males, respectively, with a strong correlation in the biological replicates (Pearson coefficients > 0.73). Fourty-four proteins were detected in all developmental stages, 64 were stage-specific and 49 were exclusively identified in L4 females. Cell compartment enrichment analysis revealed that proteins common to all stages were cytoplasmatic (p < 9.x10-6), whereas L4 unique proteins were in collagen trimers, and macromolecular complexes (p < 0.00001). Functional enrichment analysis of proteins showed significant enrichment in lipid metabolism in L3-unique proteins (p<0.00005), in mannose metabolism and protein de-glycosylation for L4-unique proteins (p < 0.00004), and in phosphorus metabolism in proteins shared by all stages (p <  2.1 x10-9). Interestingly, annexin 6, associated with cancer in humans, was detected in all life stages, but in a larger abundance in L4 females and adults. These findings indicate that S. lupi establishes complex interactions with its hosts by an arsenal of proteins expressed in different patterns in each life stage which influence the pathogenesis and oncogenesis of S. lupi and may be used as potential targets for diagnostic assays, drug targets or vaccine candidates.

Leave a Reply

Your email address will not be published.