
Introduction
Database search of tandem-MS spectra has been a well 

used technique for protein identification. But several pro-
teomics problems require more coverage and more scruti-

nous results than this technique can provide. Sequence ho-
mology searching based on peptide de novo sequences allow 

us to identify peptides that are not present in a database. This 
approach, when coupled with standard search techniques 

means we can better explain the data and improve coverage on 
the identified proteins. Alternatively, we can better explain 
peptides from organisms that are not present in any database1. 

In this work we build and evaluate a workflow involving 
PEAKS auto de novo sequencing2 and SPIDER3, a unique 
tool for peptide sequence tag based homology searching.

Data
A mixture of six standard proteins, digested with Trypsin, was 
analysed by LC-MS-MS using an LTQ Orbitrap mass spectrometer. 
Survey scans and MS/MS scans were recorded by Orbitrap with 
RP of 30000 and 7500 respectively. Fragmentation was completed 
in the C-trap for high energy CID. This method yielded the best 
data for de novo sequencing4. 638 MS/MS spectra were collected in 
total.

Approach
De novo sequencing was performed on all 638 spectra, using the 
PEAKS auto de novo tool inside PEAKS Studio 4.5. 

The inChorus meta search protein ID tool was used to launch the 
“Sequest” (BioWorks 3.3.1) and “PEAKS Protein ID” (PEAKS 4.5) 
algorithms to identify the proteins. The inChorus tool checks for 
consensus between two search engines and extra hits, leading to 
more coverage and more confidence. For this sample, an average of 
10% increase in protein sequence coverage is attained by combin-
ing the two search engines (see figure 1). This initial database 
search was able to identify the six proteins known to be in the 
sample, thereby explaining 220 of the spectra.

The initial inChorus search did not consider post-translational 
modifications. We wanted to quantify how many missed hits 
could be explained by post translational modifications. So a 
second pass search was conducted using the PEAKS Protein ID 
search engine, which is very flexible and robust with regards to 
setting post-translational modifications. The database used was 
constructed from the sequences of the proteins known to be in 
the sample, plus the reverse of their sequences. A score thresh-
old was set, for the returned peptides, to exclude any hits to 
the reverse portions of the database. As such, an additional 53 
spectra were explained.
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Results and Conclusions
While the standard search algorithms, Sequest and PEAKS Protein ID, were 
able to identify all six of the proteins in the sample, there remained consider-
able portions of those proteins’ sequences unaccounted for, and a large por-
tion of the data (335 of 638) unexplained.

Using the workflow involving PEAKS auto de novo and SPIDER, a significant 
portion of the data can be explained (Figure 4). By explaining more of the high 
quality data, we offer a better explanation, and a better understanding of pro-
tein samples. Such a workflow can be very well employed in protein charac-
terization research, but should also find a home in any proteomics analysis.
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After exhausting the possibilities for conventional database searching, 335 
spectra remained to be explained. Visual inspection confirmed that many of 
these were of good quality. Additionally, reasonable de novo sequences 
had been assigned for a large number of the spectra. Since these peptides 
came from protiens known to be in the sample, but remained unexplained, 
their sequences may have been modified; they may have mutated from the 
sequence in the database.

A sequence tag based peptide homology search tool, SPIDER, was used in 
an attempt to reconcile the de novo sequences with the sequences of the six 
proteins. The six proteins’ sequences and reversed sequences were again 
used as the reference database for SPIDER. De novo sequences, derived by 
‘PEAKS auto de novo’ from data that could not be explained by the inCho-
rus search or the second pass PTM search, were submitted to SPIDER for 
sequence tag homology searching. A further 227 spectra were explained in 
this way. Of these, 120 can be considered trustworthy.

Since SPIDER’s score is computed only from the alignment between de 
novo sequence and database homologue, it does not reflect a confidence in 
the correctness of a hit, rather it is a measure of the goodness-of-fit. As such, 
it is useful to plot the distribution of scores for both random hits (matches 
to the reverse database) and good hits (matches to the real sequences). This 
allows us to judge probability of correctness for a given SPIDER score 
(figure2).
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Figure1: Sequence coverage obtained for each of the six proteins known to be in the sample, 
obtained by searching against the Swiss-Prot database. Coverage numbers were calculated 
after filtering with BioWorks.The BioWorks only search achieved a remarkably low false posi-
tive rate (FPR) using the following filters:

The PEAKS search achieved a zero false positive rate by setting a peptide score cutt-off at 
50%. 

Additional hits obtained by using PEAKS + BioWorks are often the result of ‘recovering’ a low 
confidence hit that one search engine would have rejected, but that can be accepted when 
both search engines agree. Further coverage is obtained by accepting high scoring hits that 
either search engine found exclusively.
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Sequence Variation
Many peptides identified by SPIDER could not have been identified by tra-
ditional database searching because their sequences vary from the ones in 
the database as a result of some mutation. Figure 3 below shows some ex-
amples.

Figure 2: Illustrating the distribution of SPIDER scores for 
random matches, and hits to the known sequences. 

De Novo: [EA]YVEVTK
       ||||||
Real:  [AE]YVEVTK
     || +|||||
Database: [AE]FVEVTK

De Novo:  VFPSED[LG]R
    ||||||    |
Real:   VFPSED[GL]R
    |||||+ || |
Database: VFPSEN[GL]R

De Novo:  TPW(CarboxymethC)NDGR
      |    |   ||||
Real:   TPW(CarboxymethC)NDGR
      |    |   ||||
Database: RWW(CarboxymethC)NDGR

De Novo:  VALD(CarboxymethC)QLAQVAER
    ||||    |       ||||||||
Real:   VALD(CarboxymethC)QLAQVAER
    + |+    |      ||||||||
Database: IGLN(CarboxymethC)QLAQVAER

De Novo:  SAGWNL<WD->K
    ||||||   |
Real:   SAGWNI<VMA>K
    ||||||    |
Database: SAGWNI<PMA>K

Figure 3: Examples of se-
quence variates as found by 
the SPIDER search algorithm. 
Green denotes an exact 
match, light blue a homology 
mutation, and red a ‘non-
critical’ de novo sequencing 
error corrected by comparison 
to the homologue.
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Figure 4: The proportion of the data ex-
plained by the various components of the 
workflow involving SPIDER.


