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Data 
The Bayesian network model was tested with an ETD dataset from a 
complex C.elegans protein mixture digested with trypsin followed by 
alkylation with iodoacetamide. The spectra were acquired on a LTQ 
Orbitrap XL ETD (Thermo, California). The peptide mixtures were 
separated with Surveyor LC equipped with MicroAS autosampler 
using a reversed phase peptide trap and a reversed phase analytical 
column at a flow rate of 250 nl/min. A gradient of 5~30% acetonitrile 
in 90 minutes was employed. PEAKS   and Mascot software were 
used to identify peptides of the spectra from Swissprot database. We 
selected 259 spectra with confidently identified peptides. 130 of the 
spectrum-peptide pairs were used for training and the remaining 129 
for testing. 

Results
For each test spectrum-peptide, we randomly mutate the peptide 
sequence by replacing three consecutive residues with three other 
residues with the same total mass. If our model is good, then it should 
give the mutated sequence a lower score than the real sequence. By 
using the score function described above, 97.3% of the mutated 
sequences have scores lower than or equal to the real sequence.
We also compared our score function with that of PEAKS    Studio 5.0.  
We used PEAKS   Studio 5.0 to do de novo sequencing for each test 
spectrum. From the resulting peptide of PEAKS    Studio 5.0, we use a 
local search method to find a better peptide based on our score 
function. PEAKS   Studio 5.0 was able to correctly compute 40.6% of 
all the amino acids in the test peptides.  Our strategy improved this to 
48.4%.

Availability
The new score function will be included in a future version of the 
PEAKS   software.

 Introduction 
In mass spectrometry–based protein identification and 
characterization, sequence assignment requires a 
successful MS/MS dissociation event, that is, production of 
a sufficient number of informative fragment ions. The 
recently introduced electron transfer dissociation (ETD) 
method has proven to be complementary to collision 
induced dissociation (CID) since it is better suited for 
sequencing larger, more basic peptides and is now becoming 
a more established technology. ETD spectra differ from CID 
spectra in the magnitude and the complexity of fragment ion 
signals; however, current software tools for peptide 
identification are usually better suited for CID data and give 
poorer results with ETD data. We present a Bayesian network 
model for peptide identification with ETD data. Preliminary 
data showed promising results of the model with PEAKS_   
Studio software.

Methods
The absolute intensity of a peak does not directly reflect the 
likelihood of the peak being a signal.  Before the training of the 
Bayesian network, each peak in the spectrum is assigned with a 
normalized intensity based on four features:  (1) global rank, (2) 
local rank, (3) global intensity ratio, (4) local intensity ratio.  The 
global rank of a peak is the number of peaks (in the same 
spectrum) that are higher than or equal to the current peak.  
The global intensity ratio is the intensity ratio between the 
highest peak (in the same spectrum) and the current peak.  The 
local rank and local intensity ratio are defined similarly except 
that only the peaks within ±57 Da m/z difference to the 
current peak are examined.  Then the final normalized 
intensity is equal to the linear combination of the logarithms 
of the four features. Note that a smaller value of the 
normalized intensity indicates a stronger peak. The 
coefficients of the linear combination were trained using 
approximately 1000 signal ion peaks and approximately 
3000 randomly sampled background peaks.  The ROC 
curves for z’-ion peaks of the four features and the linear 
combination are given in Figure 1.  The figure illustrates 
that the linear combination improved the accuracy of 
distinguishing signal and noise peaks.  
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Depending on the fragment ion type, the distribution of the 
normalized intensity of the fragment ion peaks is different.  
Therefore, it is necessary to further convert the normalized intensity 
to a likelihood score for each ion type. For each fragment ion type, we 
used some training data to acquire the distribution of the normalized 
intensities of its peaks. Randomly generated positions were used to 
acquire the background distribution. Then we divided the ion 
distribution evenly into four intervals. On the centroid of each 
interval, the likelihood score was computed as log(signal probability/ 
background probability of the interval).  The likelihood score for 
other normalized intensity values are computed with linear 
interpolation. (Figure 2). 

Figure 1. Comparison of ROC Curves
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Figure 3. Bayesian Network

The probabilistic network is built based on seven common ions: 
z’, c, y, b, a, c-H  O and z’   . The resulted network has a simple 
star topology (Figure 3). Consequently, for a cleaveage point, the 
likelihood scores of its corresponding ions are summed together 
to get its score. We also tried other Bayesian network topologies 
but no apparent improvement over this simple topology was 
achieved.
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Figure 2. Likelihood Scores
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