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Figure 9: ROC curve for gapped match
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Figure 8: ROC curve for non-gapped match
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Conclusion:
The lengthy runtime of the SPIDER reconstruction 
algorithm has been separated into a slow pre-computation 
stage and a fast reconstruction algorithm.  The accuracy of 
the new algorithm is comparable to the previous version of 
the SPIDER algorithm but is two orders of magnitude 
faster. Meanwhile, the pre-computation stage of the 
algorithm is independent from the data, dependent on the 
residues/PTMs chosen, and can be saved from iteration to 
iteration. This allows for a computationally feasible search 
algorithm that is comparable to the previous gapped 
search when searching without PTMs, but allows for 
search with variable PTMs.

This new process can also be applied to the candidates 
from older (and faster) versions of SPIDER to append 
the improved score and a reconstructed sequence.

Finally, the new score allows for a quick 
and simple way of roughly estimating 
the probability of correctness given 
a particular peptide match. 

Figure 7: ROC curve for segment match rescored
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Figure 6: Block rescored - Proportion of Matches, split by RSD and sorted by score
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Figure 7, Figure 8, and Figure 9 show a different view of 
the results in terms of a ROC curve. We can see that the 
rescoring process greatly improved the ability of the 
scores to distinguish between correct and incorrect 
matches, allowing the user to select a specific threshold 
balancing true positives and false positives. 
Finally, this section of the research was replicated on the 
third dataset (a different instrument and a different set of 
organisms). A very similar improvement in the 
proportion of matches at each score and a set of very 
similar ROC curves demonstrated the ability to compare 
results between  different experiments. 

Runtime
In terms of computational runtime, the experiments were 
performed on a desktop computer equipped with an Intel 
Core 2 Duo E8400. Computation of a pre-calculated 
homology table required 82 seconds, this table can be 
saved and shared by all future SPIDER runs. Computation 
of the remaining pre-calculated lookup tables took 
roughly 16 seconds. These tables can be saved, but are 
only applicable to future SPIDER runs with the same 
selection of PTMs. Runtime and size both roughly scale 
with the number of variable PTMs selected, thus these 
remaining tables will take 31 seconds for lookup tables 
with oxidation (MHW) or 96 seconds for lookup tables 
with phosphory lation (STYHCD).

Search runtime is respectively 56% longer with three 
variable amino acids (oxidation) and roughly 330% longer 
with six variable amino acids (phosphorylation).

After accounting for a start-up time of roughly 3 seconds 
in order to load the pre-calculated matrices, the run-time 
on these pairs ranged from 0.18% to 1.69% of the old 
reconstruction runtime (an average of 0.54% when not 
including the start-up time and an average of 6.55% when 
including it) when compared to a standalone algorithm 
demonstrated previously in Han et al. (2005). This is 
a two order-of-magnitude improvement 
in runtime.
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Figure 4: Block rescored - Proportion of matches with RSD < 0.2 sorted by score
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Figure 3: Block rescored - Matches with RSD < 0.2 sorted by score

 

 

We can also see the the new score is much better at 
picking out the invalid candidates and giving them low 
scores, as well as spreading out the scores along a better 
range, giving a better ability to choose results from a 
particular probability range. Even more striking is when 
we examine the score ranges by further splitting up the 
results by RSD. As we can see, the number of very 
incorrect matches (indicated by the ranges (0.8,1) and 
(0.5,0.8)) reduces in an orderly and predictable manner 
as the scores increase. 

Figure 1 and Figure 2 refer to the original distribution of scores as returned 
by the gap search. As we can see, the old score does give some indication of 
how likely a particular match is to be correct. However, the range of the 
scores is less useful and the old algorithm gave a relatively high score to a 
significant number of incorrect matches even in the 1800-range. 
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Figure 2: Gap scored - Proportion of matches with 
RSD < 0.2 sorted by score
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Figure 1: Gap scored - Matches with RSD < 0.2 sorted by score

As we can see in Table 1 and Table 2, in all cases the new 
reconstruction algorithm returns results that are 
comparable to the previous algorithm with a substantially 
improved runtime. The reconstruction algorithm demon-
strates a substantial boost in the number of correctly 
identified amino acids and the average score when 
compared to the plain results.  Additionally, the new block 
search mode is roughly the same in performance as the old 
gapped search mode despite being compatible with 
variable PTMs (none of the old SPIDER search modes 
could handle variable PTMs). 

True and False Positives with Rescoring
It is also useful to examine whether the new score returned 
by the block scoring algorithm is useful. To examine this, 
we can look at a plot of the scores returned by the 
algorithm against the number that are reported as correct 
by RSD. For these charts, we used a value of 0.2 (i.e. 80% of 
the amino acids in a particular sequence are correct, and 
thus provide useful information) and the original search 
was done using the gapped search mode.

Figure 5: Block rescored – Absolute # of Matches, split by 
RSD and sorted by score
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Table 2: Results for 1639 spectra LCQ dataset 
(average RSD / correct amino acids)

Segment 
Search

0.647/
8451

0.504/
10171

0.489/
10362

Non-
Gapped
Search

0.576/
8451

0.478/
10555

0.475/
10625

Gapped
Search

0.573/
8536

0.487/
10427

0.485/
10452

Block 
Search

0.577/
8551

0.484/
10526

0.479/
10587

Search 
Scores

4.5
Recon.

Block
Recon..

Table 1: Results for 61 spectra QTOF dataset 
(average RSD / correct amino acids)

Segment 
Search

0.535/
342

0.268/
554

0.238/
572

Non-
Gapped
Search

0.424/
426

0.256/
261

0.230/
578

Gapped
Search

0.394/
450

0.233/
574

0.225/
581

Block 
Search

0.431/
425

0.246/
566

0.234/
577

Search 
Scores

4.5
Recon.

Block
Recon..

Results:

A dataset comprised of a sample of BSA (bovine serum 
albumin) and ADH (alcohol dehydrogenase) was 
analysed on a Sciex QTOF mass spectrometer. De novo 
sequence tags and database search results were 
generated for 61 representative spectra using PEAKS 
(Ma et al., 2002).  
The process was repeated on a large dataset of 1637 
spectra comprised of a sample of 18 purified proteins 
(Keller et al.,2002) from cow, chicken, rabbit, E. coli, 
horse, yeast, and fungi resulting in 1639 spectra was 
analysed in a LCQ mass spectrometer. 
The process was partially repeated on a third dataset of 
2404 spectra comprised of S. cerevisiae analysed in a 
LTQ mass spectrometer. 
A search was done against the human genome, the 
human genome, and S. pombe respectively for each 
dataset using the old search modes available to SPIDER 
(segment, non-gapped, gapped), the new search mode, 
the previous standalone algorithm for reconstruction 
and the new integrated block algorithm for recon-
struction.

Overall Performance and Accuracy
The results were evaluated on the basis of RSD (relative 
sequence distance), a measure that evaluates the 
distance between a de novo sequence and a true peptide 
sequence. (Pevtsov et al., 2006) In this measure, 0 means 
that the result is identical to the true peptide sequence 
and 1 means that the sequence is completely different. 

Introduction:

Proteomic MS/MS database search 
algorithms rely upon existing databases and 

are vulnerable to mutation differences between 
the protein sample and the database used.  The 

process of de novo sequencing can result in mass 
segment replacement errors. In a case where both 

of these would typically yield low confirmation, 
our algorithm as previously introduced, SPIDER1, 

finds database sequences that are homologous to 
the real peptide, by using the partially correct 
sequence tag2 (Han et al., 2005) and has proven 
accurate for correct peptide reconstruction from the 
partially correct tag and the homologous database 
sequence3 (ASMS 2007 poster 269). The primary 
objective is to develop a new score that is statistically 
meaningful, and can be compared across different 
spectra, experiments, or instruments. When the 
correctness probability of each amino acid   in a de novo 
sequencing result is known, the score should also take 
advantage of it. Secondly to develop an efficient 
algorithm, based on the new score, to search for 
homologous peptides and reconstruct the real peptides 
from the partially correct de novo sequencing result.

Method:
Let X, Y, and Z be the de novo sequence, the real sequence, 
and the database sequence, respectively. An alignment is 
defined by a series of blocks (X1,Y1,Z1), …, (Xk,Yk,Zk).  
Now let us define a score function to evaluate the quality 
of an alignment. The score is analogous to the sequence 
alignment score using BLOSUM matrices and is the sum of 
the score on each of the blocks.  For each block we calculate 
a log probabilistic score based on factors such as the local 
confidence scores, a BLOSUM90-based Needleman-
Wunsch alignment score, and a probability based on all the 
possible mass segments possible for a given block. This 
process can be speed up by pre-calculating matrices based 
on these factors rather than naively recalculating them 
on-the-fly.   The matrices can be stored from run to run to 
avoid the lengthy pre-calculation process.  

   

Algorithm Theory:
Previously discussed, given:
 ds(X,Y) = sequencing error between X and Y
 dh(Y,Z) = homology mutations between Y and Z
 The core problem is to compute d(X,Z)

The new innovations:
 A multiple alignment can be built from (X,Y) and (Y,Z) 
   (Denovo)   X: LSCF-AV
   (Real)    Y: EACF-AV
   (Match)  Z: DACFKAV

This can be broken up into blocks of at most 3 amino acids and 
parts of the alignment score pre-calculated for all possible 
combinations of at most 3 amino acids.  Not only does this 
move much of the calculation from an “on-the-fly” model to a 
“pre-cached” model, improving performance and also allowing 
for a realistic search runtime when using variable PTMs.  
Another innovation is that the positional confidence score 
returned in the de novo sequence tags can be incorporated into 
the alignment scores.  

Figure 3 and Figure 4 represent the results 
when the candidates from the gap search are 
taken and rescored using the new algorithm. 
The first observation is that the number of 
correct results has increased from 208 sequences to 339 
correct sequences. Despite the noise at lower scores, we 
can also see that there is a strong trend: matches with a 
score between 20 and 25 are correct roughly 30% of the 
time; matches with a score between 25 and 30 are correct 
60% of the time; and matches above this are correct more 
than 80% of the time. 
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