

Microsoft Windows User Guide November, 2015

Bioinformatics Solutions Inc. www.bioinfor.com

1. Introduction

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics has become a routine approach in life science since the past decade. In a typical proteomics lab, vast amounts of experimental data are generated daily requiring batch analysis without manual intervention. Further, a growing number of institutions utilize analytical pipelines to perform fundamental proteomic identification tasks. To address each of these cases PEAKS CMD offers a command line-based solution for protein/peptide identification.

The following describes how to set up and configure PEAKS CMD on a Microsoft Windows computer ensuring prompt sample analysis either independently or as part of a customized pipeline.

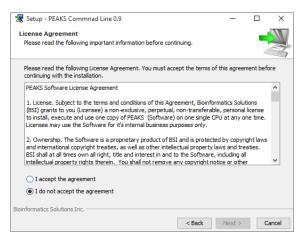
2. Configuration

To meet the demands of analyzing large data sets, PEAKS CMD is designed for 64 bit Windows Operating Systems (XP, Vista, and 7). The amount of disk space required depends on the size of the user datasets. The two main factors affecting PEAKS performance are CPU and RAM.

- A recommended configuration can be an Intel Core processor, 8GB RAM.
- An ideal configuration may be closer to Intel Core i7 or Xeon processors, 16GB RAM or more (or 2GB per core).

3. Installation

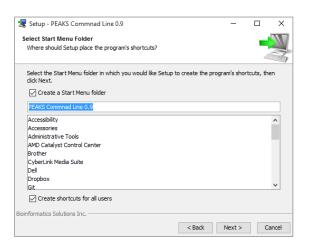
Step 0: Download the PEAKS CMD setup file to the intended computational resource (pipeline core or computer). In the event this file cannot be found, please contact <u>sales@bioinfor.com</u>. They can also assist with registration key issues.


Step 1: Locate to the PEAKS CMD software package directory and double-click the setup file to launch the installation. The setup file can be easily recognized by its icon \Im .

NOTE: If PEAKS CMD is intended to be installed on a Microsoft Windows Server, right-click the setup file and select "Run it as administrator".

Step 2: Click the "Next" button to start the installation process.

Step 3: Check the radio button "I accept the agreement" and click "Next".

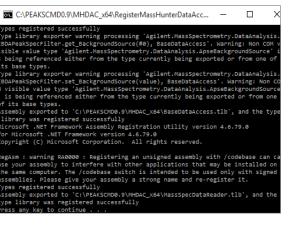


Step 4: Select the desired installation directory for PEAKS CMD using the "Browse …" button and click "Next >".

NOTE: From this step users can simply click the "< Back" button to navigate to the previous step for possible changes.

😸 Setup - PEAKS Commnad Line 0.9	-		×
Select Destination Directory Where should PEAKS Commad Line be installed?			
Select the folder where you would like PEAKS Commnad Line to be installed, t	hen dick	Next.	
Destination directory			
C:/PEAKSCMD0.9	Br	owse	
Required disk space: 206 MB			
Free disk space: 846,678 MB			
Bioinformatics Solutions Inc.			
< Back	Next >	Ca	ancel

Step 5: Create the Start Menu Folder, and click "Next >".



Step 6: Select the boxes of any required third party libraries, such as Thermo or Agilent, for direct loading instrument raw files. Click "Next >". This will prompt the installation of third party software onto this resource.

setup - PEAKS Commnad Line 0.9	_		×
Choose Third Party Libraries Select third party libraries for your instrument raw files			N
Install Thermo MSFile Reader (64 bit)	Vie	w EULA	
Install Agilent Raw File Convertor (64 bit)	Vie	w EULA	
By clicking the Next button below, the user agrees to the EULA of selected librari The installation might take several minutes. Please wait for it to finish.	es.		
Bioinformatics Solutions Inc.	xt >	Cano	:el

NOTE: A DOS window may appear requesting "press any key to continue", press any key to process to the next step.

NOTE: If third party software installations are not required, click "Next >" directly.

Step 7: The following dialog indicates the successful installation of PEAKS CMD. Click "Finish" to complete the installation.

暑 Setup - PEAKS Commna	d Line 0.9	-		×
	Completing the PEAKS Comm Wizard	inad Line	e Setu	p
	Setup has finished installing PEAKS Commu The application may be launched by selectin Click Finish to exit Setup.			iter.
	-		Fini	sh

4. Registering PEAKS CMD

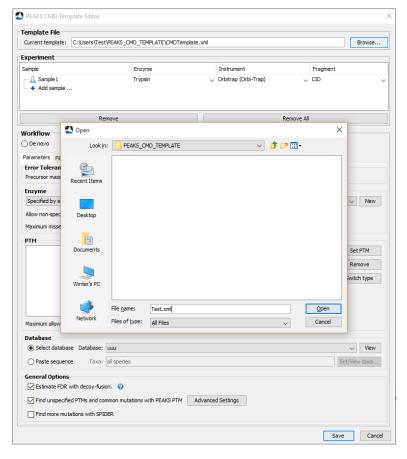
Microsoft Windows command line must be launched to run PEAKS CMD. To launch a command line, click Windows "Start" button or " [2] + S", type "cmd" in the Search or Run line and press . Typically, a Windows command line will start to run as shown below:

NOTE: If PEAKS CMD is installed on a Microsoft Windows Server, you need to run Windows command line as administrator.

Type the name of a program, folder, document, or Internet resource, and Windows will open it for you. Open: cmd	Type the name of a program, folder, document, or Internet resource, and Windows will open it for you.	💷 Run	×	
resource, and Windows will open it for you.	resource, and Windows will open it for you. Open:			C:\Users\Test>
Open: cmd ~				
Open: Critic V		~		
	OK Cancel Browse	Open:	cmo ~	
	OK Cancel Browse			

Type "peakscmd" in the Windows command line to run PEAKS CMD. The first time PEAKS CMD is run, it will ask for a registration key to activate the software.	C:\Users\Test>templateeditor C:\Users\Test>templateeditor C:\Users\Test>peakscmd PEAKS command line (C) Copyright 2008-2016 Bioinformatics Solutions Inc. Version 0.9 http://www.bioinfor.com/ All rights reserved. Failed on verify signature! Please input your registration key to activate the software:		×
Type or paste in the registration key acquired from a BSI sales representative. Usage information will be shown if the registration is successful.	C:\USers\Test>templateeditor Failed on verify signature! Please input your registration key to activate the software: Generate request Registering PEAKS license has been activated successfully. Argument Usage: -i rawfilel;rawfile2 -s Asample.txt;Bsample.txt, [-c CMDtemplate.xml] [-o resultPath] [-p projectPath] options: -c project template file in XML, including description or parameters of project, procecure, export file	· □	× ^
	<pre>the default template file is C:\Users\xwei\PEAKS_CMD_TEMPLAT\CMDTemplate.xml</pre>	s in dif	fer

5. Using PEAKS CMD


Performing protein/peptide identification using PEAKS CMD requires two steps: 1) generating a template file and 2) running PEAKS CMD with a template file.

5.1 Generating a Template File

The PEAKS CMD Workflow, including configurations of MS file loading, search types, parameters, protein/peptide filtration, and result exporting, is customized by users and stored in a template file. To run PEAKS CMD tasks, users must first create a new (or edit an existing) template file. A GUI-based editor, TemplateEditor, is provided to create or edit template files. Users can editor launch the by typing "TemplateEditor" in Windows command line and press *inter*. The editor will appear as presented right:

emplate File			
Current template: C:\Users\	Test PEAKS_CMD_TEMPLATE CMDTem	plate.xml	Browse
xperiment			
ample	Enzyme	Instrument	Fragment
—∬ Sample1 —✦ Add sample	Trypsin	✓ Orbitrap (Orbi-Trap)	↓ CID
	Remove		Remove All
/orkflow			
) De novo		Database search	
Parameters Filters Export			
Error Tolerance			
Precursor mass: 0.1	Da $$	Fragment ion: 0.2 Da	
Enzyme			
Specified by each sample	t one v end of the peptide. er peptide: 3 🔹		✓ New
Specified by each sample Allow non-specific deavage at			Vew Set PTM Remove
Specified by each sample Allow non-specific deavage at Maximum missed deavages pe			Set PTM
Specified by each sample Allow non-specific deavage at Maximum missed deavages pe PTM Maximum allowed variable PTT	r peptide: 30		Set PTM Remove
Specified by each sample Allow non-specific deavage al Maximum missed deavages po PTM Maximum allowed variable PT7 Database	r peptide: 30		Set PTM Remove Switch type
Specified by each sample Allow non-specific deavage at Maximum missed deavages po PTM Maximum allowed variable PTT Database (a) Select database Databa	r peptide: 30		Set PTM Remove Switch type
Specified by each sample Allow non-specific deavage at Maximum missed deavages po PTH Maximum allowed variable PTT Database ③ Select database Databas ○ Paste sequence Ta	r peptide: 3 \$		Set PTM Remove Switch type
Specified by each sample Allow non-specific deavage at Maximum missed deavages po PTM Maximum allowed variable PTT Database (a) Select database Databa	M per peptide 30 Mer		Set PTM Remove Switch type
Specified by each sample Allow non-specific deavage al Maximum missed deavages po PTM Maximum allowed variable PTT Database (a) Select database Databa (b) Paste sequence Ta General Options (c) Estimate FDR with decoy.	M per peptide 30 Mer	Advanced Settings	Set PTM Remove Switch type

Step 1: Create or edit the template file in the "Template File" section. The path shown in the "Current Template" text field is the default path to save a template file. Users can also save template files in a preferred directory and with different files name by clicking "Browse...".

Step 2: Add or remove samples in the "Experiment" section. PEAKS CMD supports analyzing an experiment consisting of multiple samples; add a sample by clicking the "Add sample" or remove selected samples by clicking the "Remove" button. Clicking the "Remove All" button removes all the samples listed in the experiment.

NOTE: Adding sample files in this step is not necessary. Users only need to set the sample numbers and names for the experiment.

Step 3: Select a task for PEAKS CMD. Currently two types of PEAKS CMD tasks are provided in the "Workflow" section: 1) "De novo" for *de novo* sequencing, and 2) "Database Search" for PEAKS database search.

Step 4: Configure PEAKS CMD task parameters. Typically, *de novo* sequencing and database searching require slightly different parameter configurations. The following steps demonstrate how to configure the parameters required in *de novo* sequencing and database searching, respectively.

Option 4.1: Check the "De novo" radio button.

Step 4.1.1: Configure the *de novo* sequencing parameters under the "Parameters" tab.

Current template:	C:\Users\Tes	t/PEAKS_CMD_TE	MPLATE\CMDTem	plate.xml				Br	owse
xperiment									
Sample		Enzy	me	Inst	trument		Fragment		
		Tryp	sin	v Orbi	itrap (Orbi-Trap)	~	CID		
— <u>↓</u> SampleB		Tryp	sin	√ Orbi	itrap (Orbi-Trap)	~	CID		
	Re	emove				Remove All			
Vorkflow									
De novo			۲) Database seard	h				
Parameters Filters	s Export								
Error Tolerance	Laport								
Precursor mass:	10 ppm	✓ using mono	isotopic mass \smallsetminus	Fragment ion:	: 0.5 Da				
Enzyme									
Specified by each	ennels							~	New
Allow non-specific Maximum missed d	deavage at o								
Allow non-specific	deavage at o							Set P	
Allow non-specific Maximum missed d	deavage at o							Set P	тм
Allow non-specific Maximum missed d	deavage at o							Set P Remo	TM
Allow non-specific Maximum missed d	deavage at o							Set P	TM
Allow non-specific Maximum missed d	deavage at o							Set P Remo	TM
Allow non-specific Maximum missed d	deavage at o							Set P Remo	TM
Allow non-specific Maximum missed d	deavage at o	eptide: 3 🔶						Set P Remo	TM
Allow non-specific Maximum missed d PTM	deavage at o	eptide: 3 🔶						Set P Remo	TM
Allow non-specific Maximum missed d PTH Maximum allowed	deavage at o	eptide: 3 🗢						Set P Remo	TM
Allow non-specific Maximum missed d PTH Maximum allowed to Database	cleavage at a leavages per pr variable PTM pe se Database:	eptide: 3 🗢						Set P Remo Switch	TM we type View
Allow non-specific Maximum missed d PTH Maximum allowed to Database (Select database	cleavage at o leavages per pr variable PTM pe se Database: ce Taxa:	eptide: 3 +						Set P Remo Switch	TM we type View
Allow non-specific Maximum missed d PTH Maximum allowed to Database © Select databas O Paste sequent	deavage at o leavages per pr variable PTM pe se Database: ce Taxa:	er peptide 3 🗘 swissprot Mus musculus (h						Set P Remo Switch	TM we type View
Allow non-specific Maximum missed d PTH Maximum allowed to Database (deavage at o leavages per pr variable PTM pe se Database: ce Taxa: ; with decoy-fus	er peptide 3 🗘 swissprot Mus musculus (fr	iouse mouse)	Advanced Set	tings			Set P Remo Switch	TM we type View

emplate File				_
Current template: C:\Users	\Test\PEAKS_CMD_TEMPLATE\Test.xm			Browse
xperiment				
Sample	Enzyme	Instrument	Fragment	
Add sample	Trypsin	✓ Orbitrap (Orbi-Trap)	\sim CID	
	Remove		Remove All	
De novo	C) Database search		
Parameters Filters Export				
Precursor mass: 0.1	Da V Fragment ion: 0.2	Da		
Enzyme				
	at none \checkmark end(s) of the peptide.			 ✓ New
Allow non-specific cleavage a	tt none v end(s) of the peptide.			Vew Set PTM Remove Switch type
	tt none v end(s) of the peptide.			Set PTM Remove
Allow non-specific cleavage a	t none v end(c) of the peptide.			Set PTM Remove
Allow non-specific cleavage a	t none v end(s) of the peptide.			Set PTM Remove
Allow non-specific cleavage a	t none v end(s) of the peptide.			Set PTM Remove
Allow non-specific cleavage a	t none v end(s) of the peptide.			Set PTM Remove
Allow non-specific cleavage a				Set PTM Remove

Step 4.1.2: Set the *de novo* sequencing result filter under the "Filters" tab.

Current template: C:\Users\Test	t\PEAKS_CMD_TEMPLATE\Test.x	ml				Browse
xperiment						
Sample	Enzyme	Instrum	ent		Fragment	
☐ Sample1	Trypsin	✓ Orbitrap) (Orbi-Trap)	~	CID	
Re	emove		Re	emove All		
Vorkflow						
De novo		O Database search				
Parameters Filters Export						
De novo ALC (%) ≥ 50						

Step 4.1.3: Select the files required for export under the "Export" tab.

urrent template:	C:\Users\Test\PE	AKS_CMD_TEMPLATE\Test.xml			E	Browse
periment						
ample		Enzyme	Instrument	Fragment	t	
<u>↓</u> Sample 1 <mark>↓</mark> Add sample .		Trypsin	↓ Orbitrap (Orbi-Trap)	↓ CID		
	Remo	ve	F	Remove All		
orkflow						
) De novo			atabase search			
arameters Filters	s Export					
🗹 De novo pep	otides	(de novo peptides.csv)				
🗹 De novo pep	otides - pepxml	(de novo peptides.xml)				
🖂 All de novo	candidates	(all de novo candidates.csv)				
🗸 All peptide f	eatures	(peptide features.csv)				

Option 4.2: Check the "Database search" radio button.

Step 4.2.1: Configure the database search parameters under the "Parameters" tab. Users can also choose to expand their search by utilizing PEAKS PTM and SPIDER. To do this check the "Find unspecified PTMs and common mutations with PEAKS PTM" and "Find more mutations with SPIDER" buttons at the bottom of the window.

Femplate File					
-	rs\Test\PEAKS_CMD_TEMPLA	TE\Test.xml			Browse
Experiment					
Sample	Enzyme		Instrument	Frage	nent
····∏ Sample1	Trypsin		 Orbitrap (Orbi-Trap) 	V CID	
+ Add sample			,		
	Remove		R	temove All	
Norkflow					
🔵 De novo		Database	e search		
Parameters Filters Expo	+				
Error Tolerance	c .				
Precursor mass: 0.1	Da 🗸 using monoisotop	pic mass 🧹 🛛 Fragme	ention: 0.2 Da		
Enzyme					
Specified by each sample					~ New
Allow non-specific cleavag		ptide.			
Maximum missed cleavage	s per peptide: 3 🜩				
РТМ					
					Set PTM
					Remove
					Switch type
Maximum allowed variable	PTM per peptide 3 🛬				
Maximum allowed variable Database	PTM per peptide 3				
					↓ View
Database Select database Dat					View Set/View taxa
Database Select database Dat	abase: uuu				
Database Select database Dat Paste sequence	abase: uuu Taxa: all species				
Database Select database Dat Paste sequence General Options Estimate FDR with dec	abase: uuu Taxa: all species	FAKS PTM Artuanc	ed Settinos		
Database Select database Dat Paste sequence General Options Estimate FDR with dec Find unspecified PTMs	abase: uuu Taxa: all species oy-fusion. Q and common mutations with P	'EAKS PTM Advanc	ed Settings		
Database Select database Dat Paste sequence General Options Estimate FDR with dec	abase: uuu Taxa: all species oy-fusion. Q and common mutations with P	EAKS PTM Advanc	red Settings		

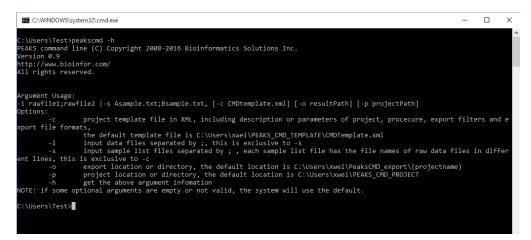
Configure the protein sequence database in the "Database" section under the "Parameters" tab. A protein sequence database is necessary for performing the PEAKS database search. Users can either select one of the existing protein databases created in a previous search or create a new database entry from a FASTA file.

If there is no database entry in the list, users must first click the "View" button and create a database through the prompts in a pop-up "Database Info" dialog by then clicking the "New" button. Otherwise, users can simply select an existing database entry for the subsequent data analysis. Note that users can always click the "View" button to modify an existing database entry in PEAKS CMD.

emplate File Current template: C:	Users\Test\PEAKS_C	D TEMPLATE\Test.xn	h				Browse
xperiment							
Sample		Enzyme	Ins	trument		Fragment	
Add sample		Trypsin	↓ Orł	itrap (Orbi-Trap)	~	CID	
	🔕 Database Info					×	
De novo	FASTA format datab	ase: NCBI nr	√ Valio	late Database	Export Decoy	DB	
Parameters Filters E		uuu			Valida	ted	
Error Tolerance Precursor mass: 0.1	1	e\uniprot_sprot.fasta		Browse	or Download	ł	
Enzyme	EST database						
Specified by each sam Allow non-specific clear Maximum missed clears	Rule to parse acce	- Fasta Title Format ession/id from FASTA ti					✓ New
РТМ		ription from FASTA titl	e:			_	
	\s+\(.*\) Accession/id URL:						Set PTM
		nlm.nih.gov/entrez/vie	wer.fcai?db=prot	ein&val= <acces< td=""><td>sion/ID></td><td></td><td>Remove</td></acces<>	sion/ID>		Remove
	Delimiter:						Switch type
	Taxonomy Options						unter type
	taxonid			Browse			
Maximum allowed varia							
Database				New 5	Save Can	cel	
Select database	Database: uuu						View
O Paste sequence	Taxa: all species					Set	/View taxa
General Options							
Find unspecified P		tions with PEAKS PTM	Advanced Se	ttings			

Step 4.2.1: Set the database search result filter under the "Filters" tab.

iample Enzyme Instrument Fragment 	Current template:	C: Users \Tes	st\PEAKS_	CMD_TEMPLATE	Test.xml					Browse
Add sample 1 Trypsin Orbitrap (Orbi-Trap) CLD Add sample Remove Remove All Vorkflow Op Do novo O Database search Parameters Filters Export Peptides FIDE ≤ 10.0 % O -10lgP ≥ 15.0	xperiment									
	Sample			Enzyme		Instrument			Fragment	
Vorkflow Image: Constraint of the second seco				Trypsin		🗸 Orbitrap (Orl	bi-Trap)	~	CID	
De novo ● Database search Parameters Filters Export Peptides ● FDR ≤ 1.0 % ○ -10lgP ≥ 15.0		R	emove				Remo	ve Al		
De novo ● Database search Parameters Filters Export Peptides ● FDR ≤ 1.0 % ○ -10lgP ≥ 15.0	Vorkflow									
Peptides ● FDR ≤ 1.0 % ○ -10lgP ≥ 15.0) De novo				🖲 Da	tabase search				
	Parameters Filter	S Export								
Proteins -10igP ≥ 20.0 and unique peptides ≥ 0	Peptides	DR ≦ 1.0	%	() -10lgP ≥	15.0					
	Proteins -10lg	≥ 20.0	and ur	nique peptides ≥	0					


Step 4.2.2: Select the files required for export under the "Export" tab.

emplate File					1	Browse
Current template: C:\Users\Test\PEAKS_CMD_TEMPLATE\Test.xml						
(periment						
ample	Enzym	2	Instrument		Fragment	
—⊥ Sample1 — ∔ Add sample	Trypsin		 Orbitrap (Orbi-Trap) 	~	CID	
- Add sample						
Remove				Remove All		
orkflow						
) De novo		Databa	ise search			
arameters Filters Export						
✓ Proteins	(proteins.csv)				
Supporting peptides	(protein-peptides.csv)				
DBSearch peptides	(peptides.csv)				
☑ DB search peptide-spectrum n	atches (OB search psm.csv)				
🗸 Proteins - fasta	(proteins.fasta)				
🗹 Peptides - pepxml	(peptides.pep.xml)				
Peptides - pepxml for Skyline	(peptide.pep.xml, data.m	izxml)			
Peptides - mzidentml(1.0.0)	(peptides_1_0_0.mzid)				
Peptides - mzidentml(1.1.0)	(peptides_1_1_0.mzid)				
_						

Step 5: Click the "Save" button to save the template file and close the TemplateEditor.

5.2 Running PEAKS CMD with a Template File

PEAKS CMD supports six arguments. Running PEAKS CMD with the argument "-h" or "-H" generates the list of six valid arguments as shown below:

Among the six arguments, -i or -s are mandatory for adding the sample spectra data and are mutually exclusive. A user will then choose one of them and specify the required files or file lists. All other arguments are optional. If the input values for some of the optional arguments are not valid, PEAKS CMD will use the pre-specified default values.

Two examples of using the -i arguments are shown below:

1) Using the -i argument for loading only one data file:

The -s argument requires one or multiple text files in which each line lists an absolute path of a data file. When using the -s argument, the number and the names of the sample files must be identical to the number and names of the samples in template file generation using the TemplateEditor.

An example of using the -s argument with multiple sample files is shown below:

An example of a sample file is shown below:

NOTE: The spectral data files in each sample file are listed line by line, or separated by ";" in a single line.

SampleD - Notepad	-	×
File Edit Format View Help		
E:/test/peaks-command/test_data/BSA-LysC-1.RAW E:/test/peaks-command/test_data/BSA-Trypsin-1.RAW		~

If values are not specified for the optional arguments the default template file is used automatically, the project is saved into a default folder, and the results is exported into a default folder. The absolute path of the default template file is C:\Users\user_name\PEAKS_CMD_TEMPLATE\CMDTemplate.xml, the default project location for is C:\Users\user_name\PEAKS_CMD_PROJECT, and the default directory of the exporting files is C:\Users\user_name\PeaksCMD_export/project_name.

PEAKS CMD supports the direct loading of RAW files from ThermoFisher, Waters, and Agilent instruments. Multiple types of text-based spectral data files, *eg.* PKL, MGF, mzXML, and mzML, are also supported.