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Abstract:
PEAKS 11 supports QC analysis to monitor attributes of LC-MS/MS data that fail to meet a specified standard. 
In this study, we utilized published label-free quantification (LFQ) datasets to effectively showcase the 
application and functionality of the QC module within PEAKS 11.
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Study aims and background:
LC-MS-based protein/peptide quantification has been a subject of continuous interest in the fields of 
physiopathology and pharmaceutical studies. Label-free quantification (LFQ) allows for different MS 
acquisition strategies, namely, data-dependent acquisition (DDA) and data-independent acquisition (DIA). 
While DDA represents the more traditional approach, it is susceptible to high missing values and 
under-sampling. On the other hand, DIA offers increased robustness and can mitigate biases associated with 
DDA. However, DIA also presents challenges, such as a high false positive rate in complex MS2 spectra.

In this investigation, identical samples were analyzed using high-resolution DDA and DIA (SWATH) methods, 
and subsequently compared. The quantification of high-resolution DDA (HS-DDA) demonstrated comparable 
accuracy and precision to DIA, and in certain cases, even outperformed DIA for proteins characterized by low 
abundance and small fold-changes.

For the purpose of this application note, only DDA data was utilized to demonstrate the capabilities of the QC 
module in PEAKS 11. This choice was made to emphasize the software's comprehensive QC analysis and its 
adeptness in presenting results effectively.

Experimental design:
Five groups of samples were prepared with three different proteomes (human, E.coli and yeast) and run with 
five technical replicates (n=25). The human protein amount proportion was 60% across all samples. The portion 
of E. coli and yeast protein amounts were as follows:

A: 5%/35%, B: 7.5%/32.5%, C: 10%/30%, D: 15%/25%, E: 20%/20%.

DDA data was acquired with MS1 240000 resolution and MS2 15000 resolution. The gradient was 180 min long. 
A detail of LC-MS method can be found in [2].

LFQ Data Analysis:
MS data (5 runs *5 samples) was analyzed in PEAKS 11 as LFQ with PEAKS Q module. LFQ was applied with 
the implementation of match-between-run and total ion current (TIC) normalization techniques. Further 
specifics on the search parameters and the configuration of the quality control (QC) analysis are presented in 
Figure 1a (LFQ) and Figure 1b (QC). 

While using at least two peptides per protein for quantification, 5157 protein groups are quantifiable. Statistics 
of filtered results are shown in Figure 2a; the volcano plot is shown in Figure 2b.

Introduction:
LC-MS-based protein/peptide quantification has garnered considerable attention in the fields of 
physiopathology and pharmaceutical research. In particular, clinical studies rely on a substantial number of 
samples to ensure adequate statistical power, often necessitating over 50 samples per group due to the 
significant interindividual variation [1]. For cohorts with such large sample sizes, the implementation of a 
rigorous Quality Control (QC) step becomes indispensable for unobstructed and reliable statistical analyses. 
Only through this rigorous approach can experimental conclusions be confidently validated.

Addressing this need, PEAKS 11 introduces a specialized QC module that enhances protein/peptide 
identification and quantification results. The module offers sophisticated QC analysis, ensuring the 
presentation of interactive and user-friendly outputs tailored to the specific requirements of the user's 
research.

Case study: benchmarking data set analysis with PEAK 11:
A published data set [2] was used as an example to demonstrate the capability of label free quantification 
(LFQ) and QC analysis in PEAKS 11.



Fig 1. Establishing protein/peptide LFQ and QC in PEAKS Studio 11 (a) The LFQ setup and parameters in PEAKS Q workflow. Top 3 peptides were 
selected to calculated protein quantification and auto (TIC) normalization was applied.  (b) QC Setup: The QC process was configured by examining all QC 
attributes. The control sample, A01, was designated for reference, and a tolerance threshold of 10% was set to monitor variations within the QC samples. 
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QC result of LC-MS data:
In the QC Summary tab, the QC statistics of the LFQ results were categorized into three groups: control 
sample, passed samples, and failed samples. Samples were classified as failed if any of their attributes fell 
outside the tolerance level, while samples with all attributes within +/- 10% of the control sample (A01) were 
considered as passed samples. A concise overview of the QC findings is presented in Figure 3(a). Notably, 
among the 29 samples in the dataset, only 10 samples exhibited all QC attributes falling within the 10% 
tolerance range.

Figure 3(b) displays the distribution of the failed attributes in this dataset, with "TIC correlation" and "Feature 
correlation" being the two most prevalent. These two attributes collectively imply potential concerns 
regarding the dataset's reproducibility. Further elaboration and discussion on these specific QC attributes will 
be provided in subsequent sections.
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Fig 2. LFQ result. (a) statistics of quantification result (b) Volcano plot illustrating differentially expressed proteins. Proteins with downregulation are indicated 
in green, upregulated proteins in red, and proteins that do not pass the filter criteria (i.e., containing only one quantifiable peptide) are depicted in grey.

Fig 3. QC summary of all samples. (a) statistics of QC results (b) The distribution of failed attributes.

Mass error in QC:
The mass error emerges as a common factor contributing to imperfections in MS datasets, especially when 
dealing with large cohorts of samples. Environmental temperature fluctuations, MS calibrations, and power 
surges are potential factors responsible for the occurrence of MS errors. Thus, it is imperative to initially 
investigate whether the QC attribute failures can be attributed to MS errors. The PEAKS QC module offers 
multiple avenues for researchers to assess MS errors. The distribution of MS errors was visualized across the 
categories of control, passed, and failed samples (Figure 4). The violin chart analysis revealed no significant 
differences between passed and failed samples in both MS1 and MS2 levels. This observation suggests that 
mass error may not be the primary cause for the samples failing to meet the QC criteria.



Fig 4. Sample error distribution. (a) MS1 Mass Error distribution (b) MS2 Mass Error distribution.

In addition to the collective comparison between passed and failed samples, individual samples' mass errors 
can also be independently compared with the control sample. Figure 5 demonstrates this comparison, where 
the sample with the highest MS1 error (D03) was selected for evaluation. It is evident from the analysis that 
sample D03 remains well within the acceptable mass error range of +5/-5 ppm when compared to the control 
sample. This further reinforces the notion that the mass error is not a major contributing factor to the failure of 
samples to meet the QC criteria in the dataset.

Fig 5. Individual Sample error distribution. (a) Bar chart of MS1 error mean of all samples. D03, marked by red rectangles, has the highest MS1 error mean 
(b) MS1 error distribution comparison between control sample A01 and D03.

TIC Correlation:
Figure 3(b) highlights the most frequently failed QC attribute as TIC correlation. This attribute serves as a 
measure of similarity between the selected sample and the control sample. In a set of technical replicates, the 
TIC chromatograms should exhibit high similarity, leading to relatively high TIC correlation values. However, in 
this study, the TIC correlation is not ideal, even within the same technical replicate datasets (Figure 6).

Figure 7 presents the TIC chromatograms of two samples from technical replicate group A, overlaid with the 
control sample. In Figure 7(a), the TIC chromatograms of the two samples are nearly identical, indicating high 
similarity. However, in Figure 7(b), there is a small but discernible difference between the two chromatograms, 
suggesting reduced similarity.

The evaluation of chromatogram similarity provides a quick and effective method to assess sample 
reproducibility. In PEAKS 11 QC module, multiple tools are offered to check the identification and 
quantification reproducibility across various sample aspects. Figure 8 illustrates Venn diagrams depicting the 
peptide and protein identifications between samples A03 & A01 and A05 & A01. Even between technical 
replicates (A01 and A03) with highly similar TIC chromatograms, the exact reproducibility is slightly below 80% 
(common identified proteins/peptides divided by the total): 78% for proteins and 61% for peptides. This 
observation highlights the stochastic nature of DDA experiments where the precursor selection is 
semi-random.
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Fig 6. TIC correlation of each sample comparing to control sample 
A01. The technical replication of group A was marked with red 
rectangle. 

Fig 7. TIC chromatogram overlay between control sample and selected sample 
(a) A03 vs A01, TIC correlation 0.95 (b) A05 vs A01, TIC correlation 0.86.

The identification reproducibility is somewhat lower between A01 and A05, with 76% for proteins and 54% for 
peptides. This decrease in reproducibility is understandable since the chromatograms are less identical 
between sample A01 and A05.

Fig 8. Venn diagram of sample identification. (a)(b), number of 
unique or common identified proteins or peptides in A05 and 
A01. (c)(d), number of unique or common identified proteins or 
peptides in A05 and A01.

The evaluation of chromatogram similarity provides a quick 
and effective method to assess sample reproducibility. In 
PEAKS 11 QC module, multiple tools are offered to check 
the identification and quantification reproducibility across 
various sample aspects. Figure 8 illustrates Venn diagrams 
depicting the peptide and protein identifications between 
samples A03 & A01 and A05 & A01. Even between technical 
replicates (A01 and A03) with highly similar TIC 
chromatograms, the exact reproducibility is slightly below 
80% (common identified proteins/peptides divided by the 
total): 78% for proteins and 61% for peptides. This 
observation highlights the stochastic nature of DDA 
experiments where the precursor selection is semi-random.

In DDA experiments, it is common to observe suboptimal 
identification reproducibility, even in technical replicates, 
due to semi-random precursor selection. However, in LFQ 
experiments, where MS1 ions are used for quantification 
and ID-transfer is applied, the missing value issues are 
significantly reduced, and quantification reproducibility 
should be higher between technical replicates.

Figure 9 illustrates the quantification correlation across three different levels: proteins, peptides, and features. 
Both A03 and A05 demonstrate excellent linear correlation, exceeding 0.95, when compared to the control 
sample A01. The quantification correlation in A05 is only marginally lower, approximately 0.01, compared to 
A03. This finding implies that despite sample A05 not passing the QC attribute check in TIC correlation, its 
LFQ reproducibility remains largely unaffected.

Notably, the quantification correlations within technical replicates A exhibit high values above 0.95 (data not 
shown). This observation suggests that our current TIC correlation tolerance level might be overly stringent.

7a.

7b.

Proteins Peptides

8a.

8c.

8b.

8d.



9a.

9d.

9b.

9e.

9c.

9f.

Fig 9. Pearson correlation of quantification results. a-c, proteins, peptides and features correlation between A03 and A01; d-f, proteins, peptides and features 
correlation between A05 and A01

LC Conditions: 
While the overall sample reproducibility remains largely unaffected, it remains of interest to investigate the 
factors contributing to the observed decrease in TIC chromatogram correlation. One potential reason for the 
changes in TIC chromatogram correlation could be variations in the LC conditions.

Fortunately, PEAKS 11 QC module offers multiple tools to assess the column performance, gradient suitability, 
and other relevant factors. In Figure 10(a), it is demonstrated that the full width at half maximum (FWHM) across 
the entire sample set remains consistent, indicating that the column and LC conditions throughout the run 
exhibit no significant shifts. Furthermore, the comparison of MS2 count over time and LFQ retention time (RT) 
alignment between A01 and A05 also suggests that no major LC condition changes occur even between two 
samples exhibiting TIC chromatogram differences.

These findings indicate that factors other than major LC condition changes may be contributing to the 
observed variations in TIC chromatogram correlation. Further investigation and analysis are required to 
identify and address these factors effectively.

MS Sensitvity:
The observed variations in TIC chromatogram correlation may also be influenced by changes in MS sensitivity 
during sample acquisition. Accumulation of neutral particles on the front end of the MS can lead to decreased 
instrument sensitivity, affecting the TIC chromatogram and resulting in low TIC correlation.

Figure 11 provides intriguing insights, revealing a trend with the base peak chromatogram (BPC) and the 
number of identified peptides across different samples within a technical replicate group. The decreasing 
trend in both BPC and peptide identification numbers suggests a potential decline in MS sensitivity.
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Fig  10. Quality control of LC condition changes. (a) FWHM of all samples (b) MS2 over retention time comparison between A01 and A05 (c) LFQ RT 
alignment between A01 and A05.
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Fig  11. .(a) FWHM of all samples (b) Peptide identification numbers of all sample. The rectangle and the arrow show the decreasing trend in technical replicates. 

To explore the underlying reasons for this trend, we regrouped the samples based on their acquisition time 
(Figure 12(b)). By plotting the BPC of each sample and the average BPC of different time groups (Figure 12(a)), 
a clear trend emerges. The average BPC of time groups indicates a gradual decrease in MS sensitivity over 
time, explaining the observed differences in TIC chromatograms within the technical replicate groups. 

Feature Correlation:
The feature correlation emerges as another crucial QC attribute that falls short of meeting the threshold, and 
this phenomenon is exclusively observed in samples belonging to group E (Figure 13(a)). This observation 
indicates the existence of inherent differences between the technical groups, particularly related to the 
variation in sample amounts between yeast and E. coli (as indicated in the experimental design).

To gain further insights into these population differences, Figure 13(b) reveals three distinct populations 
representing higher E. coli protein levels and lower yeast protein levels in sample E05. This observation is 
consistent with the protein density ratio depicted in Figure 13(c). The observed discrepancy in protein levels 
between yeast and E. coli in sample E05 aligns with the variations observed in the feature correlation, 
potentially contributing to the failure of this QC attribute in the group E samples..
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Fig  12. (a) BPC of samples grouped by acquisition time. The red rectangle highlights the average BPC of different groups. (b) the list of data acquisition time 
of all samples.

Fig  13. (a) All samples� feature correlation to control sample (b) The feature correlation distribution between E05 and A01 (c) Protein density ratio between 
group A and group E  
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Conclusion:
This study employed PEAKS 11 to conduct Label-Free Quantification (LFQ) and Quality Control (QC) analyses 
on a diverse dataset. The investigation focused on changes in TIC chromatogram and revealed that it was 
primarily caused by a drop in MS sensitivity. While the sample reproducibility was not significantly affected in 
this study, it highlights the importance of consistently monitoring machine status, including factors like MS 
error, MS sensitivity, and LC conditions. The QC analysis in PEAKS 11 proved invaluable in identifying and 
understanding potential issues influencing sample reproducibility and data quality. By addressing these 
factors, we can draw robust and meaningful conclusions from our dataset, furthering our understanding of the 
underlying biological processes under investigation.
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