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Introduction

Scan QR to… Summary

Tumor-specific neoantigens are only expressed on the surface of cancer cells and hence can

help the immune system to distinguish cancer cells from normal cells. Neoantigens may arise

from different sources, including missense mutations, non-coding regions, bacteria-derived,

which are challenging to identify using a database search approach. Thus, deep learning-

based de novo sequencing models specialized for human leukocyte antigen (HLA) peptides

represent an ideal solution to identify candidate neoantigens from mass spectrometry (MS)

immunopeptidomics data. In addition, only a small fraction of HLA peptides can be

recognized by T cells to trigger immune responses. The chance of finding such immunogenic

neoantigens is remarkably low, usually less than half a dozen out of thousands of somatic

mutations detected per patient. Thus, in silico methods are essential to accurately predict the

immunogenicity and prioritize candidate neoantigens before in vitro validations, which often

involve time-consuming and costly experiments. De novo sequencing of neoantigens and

predicting their immunogenicity are essential for cancer immunotherapy and vaccine design.

• DeepNovo-HLA and DeepImmu together enabled a complete software suite for de novo sequencing and predicting the immunogenicity of class

1 and class 2 neoantigens.

• By taking advantage of a huge amount of MS-based immunopeptidomics data and the idea of T cell central tolerance, our tools substantially

improved not only the sensitivity in neoantigen identification but also the accuracy in neoantigen selection for cancer immunotherapy.

Methods

Here we presented DeepNovo-HLA, a deep learning-based de novo sequencing model

specialized for HLA peptides (Figure 1).

1. DeepNovo-HLA was trained on a very large, carefully curated dataset from 20

immunopeptidomics studies. The dataset includes nearly 3,000 runs on two major MS

instruments Orbitrap and timsTOF, 26M MS/MS spectra, 1.1M HLA-I and HLA-II

peptides, and covering >90 alleles for each class.

2. DeepNovo-HLA neural networks were designed to learn both the fragment ion patterns in

MS/MS spectra and the amino acid patterns of HLA peptides, especially their allele motifs

patterns at the anchor positions.

3. DeepNovo-HLA was integrated in our peptidome workflow for MS-based

immunopeptidomics to identify candidate neoantigens from non-canonical sources.

 DeepNovo-HLA

Figure 1. DeepNovo-HLA, a deep learning-based de novo sequencing model specialized for HLA peptides.

After candidate neoantigens were identified by DeepNovo-HLA, we used DeepImmu to

predict their immunogenicity and prioritize top candidates for in vitro validations (Figure 2).

1. DeepImmu is a personalized model for immunogenicity prediction based on the central

tolerance, i.e. the positive and negative selection of T cells in an individual patient. In the

positive selection, T cells are selected by their ability to bind to peptide-HLA complexes.

In the negative selection, they are selected against their ability to bind to self peptides.

2. DeepImmu used HLA self peptides obtained from MS-based immunopeptidomics to

resemble the negative selection of T cells in each individual patient. For the positive

selection, we collected all epitopes reported in positive T cell assays from the Immune

Epitope Database (IEDB) that matched the patient’s HLA alleles.

3. Using this personal dataset of negative and positive peptides, DeepImmu model was

trained specifically for that patient to predict his/her T cell responses to candidate

neoantigens. A bi-directional long short-term memory (LSTM) network coupled with

amino acid embedding was used as the model architecture.

 DeepImmu

Figure 2. DeepImmu, a personalized immunogenicity prediction model based on the central tolerance of T cells in an individual patient.
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Figure 3. Evaluation of DeepNovo-HLA and the peptidome workflow on the immunopeptidomics datasets of 10 cancer patients. a, 

Accuracy of de novo HLA peptides. b, Number of identified HLA peptides. c,d, Length distribution and NetMHCpan binding prediction for 

HLA peptides identified from patient 1. 
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We evaluated DeepNovo-HLA and the peptidome workflow on the immunopeptidomics

datasets of ten cancer patients from previously published studies. HLA-I data was available

for all ten patients, whereas HLA-II data was available for patients 1 and 3-6. For

comparison, we also performed de novo sequencing and non-enzyme-specific database search

using our standard proteomics softwares PEAKS De novo and PEAKS DB on these datasets.

Figure 3a shows that the peptide accuracy of DeepNovo-HLA was 53-70% on HLA-I

peptides and 21-29% on HLA-II peptides. On average, DeepNovo-HLA achieved 11% higher

peptide accuracy than PEAKS De novo on HLA-I peptides and 6% higher on HLA-II

peptides. Powered by DeepNovo-HLA, our peptidome workflow identified 21-61% more

HLA-I peptides and 23-35% more HLA-II peptides than PEAKS DB (Figure 3b). DeepNovo-

HLA and the peptidome workflow consistently outperformed PEAKS across all ten patient

datasets and on both HLA classes.

We also double-checked the correctness of the identified HLA peptides by verifying their

characteristic length distribution and their binding to the respective patient’s alleles using

NetMHCpan. Figures 3c,d show an example of the length distribution and the binding %Rank

of HLA-I peptides identified by PEAKS DB and the peptidome workflow on patient 1. The

improved identifications of the peptidome workflow over PEAKS DB can be observed across

different peptide lengths and different levels of binding %Rank. These results again confirm

the robust performance of our peptidome workflow.

 Evaluation of DeepNovo-HLA and the peptidome workflow

We evaluated DeepImmu on the immunopeptidomes and neoantigens of 18 cancer patients

from ten previously published studies. The number of neoantigens varied from 2-6 per

patient, all of which had been confirmed as immunogenic by T cell assay validation. In the

evaluation set of each patient, the ratio between immunogenic neoantigens to random non-

immunogenic peptides was set at 1:100, i.e. an immunogenicity prediction tool needs to

prioritize 1 neoantigen out of every 100 negative peptides. We also compared DeepImmu to

three other tools, including PRIME (ver. 2.0), NetMHCpan (ver. 4.1), and IEDB predictor.

Figures 4a,b show the areas under the receiver operating characteristic curves (ROC-AUC) of

the four tools on each patient and on the combined evaluation set of 18 patients. DeepImmu

achieved an overall AUC of 0.69 and outperformed the other tools on 12 of 18 patients.

Figure 4c further shows the ranks of neoantigens on top of non-immunogenic peptides.

DeepImmu ranked 25% of the neoantigens within its top 10% predictions, and nearly 75% of

the neoantigens within its top 30% (Q1 and Q3 quartiles of the boxplot, respectively). That is,

for an average evaluation set containing 4 neoantigens and 400 non-immunogenic peptides,

DeepImmu’s top 40-120 predicted candidates shall contain 1-3 neoantigens of interest.

 Evaluation of DeepImmu and other immunogenicity prediction tools
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Figure 4. Performance evaluation of four immunogenicity prediction tools on the neoantigens of 18 cancer patients. a, Areas under the 

receiver operating characteristic curves (ROC-AUC) of the prediction tools on each individual patient. b, ROC curves on the combined 

evaluation set of 18 patients. c, Predicted ranks of immunogenic neoantigens versus non-immunogenic peptides (lower % is better). 


