
Investigation of the immunopeptidomic 
antigen-presented landscape of malignant pleural 
mesothelioma in human cell lines

Abstract:
Malignant pleural mesothelioma (MPM) is a difficult-to-treat cancer with limited success in current therapies. 
Peptide-based cancer vaccines offer a potential avenue for intervention. In this investigation, a publicly 
available mass spectrometry dataset [1] was utilized to explore the immunopeptidomic landscape of MPM 
across four distinct cell lines, each with two replicates. The analysis revealed both canonical and non-canonical 
peptides using our PEAKS 11 DeepNovo peptidome workflow. Subsequently, the length distribution, binding 
prediction, allele-specific binding of identified peptides were analysed and compared across cell lines. 
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Methods:
A published dataset was used [1]. Mass spectrometry data from four different cell lines with two duplicates are 
analyzed using PEAKS 11 Deepnovo workflow (Figure 1). Precursor and peptide fragment ion mass errors were 
set to 20.0 and 0.05 Da, respectively. Oxidation (M) and N-terminal acetylation were set as variable PTMs. 
Peptide identification was performed using a 1% peptide FDR with the human Uniprot reviewed database. 
Peptide length restriction was set to 7-20, and only unique peptide sequences were included in the final list of 
identified peptides. Length distribution, binding affinity prediction to specified alleles and sequence motif 
generation were done using MVP workflow [2][3] using a combined peptide list from all search results for each 
sample.
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Fig  1.  Schematic workflow for DeepNovo peptidome workflow.

Results and Discussion:
The identified peptide numbers are listed in Table 1. The number of identified peptide between the replicates 
is reproducible, except for replicate 2 of H28 and H211, suggesting some degree of sample loss during the 
purification/preparation process (Table 1). 

Inroduction:
Immunopeptidomics plays a critical role in 
advancing the development of peptide-based 
cancer vaccines, with a specific emphasis on 
identifying neoantigens vital for instigating immune 
responses against cancer cells. A standout strategy 
involves the direct immunopurification of the 
MHC-antigen complex, proving to be the most 
efficacious approach for precisely pinpointing 
potential CD8+ T cell targets. 

Central to this methodology is the utilization of mass spectrometry as the principal tool for data acquisition. 
PEAKS 11 Deepnovo workflow analysis raw mass spectrometry data, and identifies peptides by database 
search, homolog and DeepNovo search. Furthermore, the platform integrates an essential component for 
immunogenicity assessment� a personalized model centered on T cell immunogenicity. In this study, we use 
our platform to investigate the immunopeptidomic landscape of MPM across four distinct cell lines.

Table 1. Identified immunopeptide numbers in samples. DB peptides represent peptides identified from database. 
Homolog peptides represent peptides identified from database with mutations. DeepNovo peptides represent 
peptides that are not in the database. All peptides were filtered to 1% peptide FDR, length of 7-20
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Fig  2.  Venn Diagram comparing identified peptides from all four cell lines. 

Fig 3. The length distribution of all identified peptides. Four distinct cell lines with two replicates each. Length 
distributions for each cell line are shown. Blue and red bars represent the different replicates in each cell line.  

Results and Discussion Cont�d:
The Venn diagram showing the common versus unique peptides across the cell lines revealed that the majority 
of identified immunopeptides were unique to each cell line, with less than 1% common peptides across all four 
cell lines, indicating the complexity and heterogeneity of MPM (Figure 2). However, it is possible to further 
investigate this 1% peptide subset to gain valuable insights from it.
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The binding specificity of eluted peptides suggested an unequal distribution of peptides across MHC alleles 
(Figure 5). This inequality may arise from variations in the surface expression levels of different MHC alleles, 
caused by epigenetic regulation or degradation of the MHC molecules [4][5], leading to differential 
presentation of peptides to T cells. Such differences may influence the strength and specificity of immune 
responses, impacting an individual's susceptibility to diseases and their response to immunotherapies [4-6]. 
Motif deconvolution identified the expected binding motifs for all MHC alleles, confirming the high quality of 
the immunopeptidomics dataset (Figure 6).

Results and Discussion Cont�d:
In the length distribution analysis, peptides ranging from 8 to 12 mers constituted the majority of eluted 
peptides. Notably, within this range, 9 mers emerged as the predominant population. The distribution of 
peptide lengths exhibited a characteristic pattern typical of the length distribution observed for HLA-I 
peptides (Figure 3). Furthermore, the peptide-MHC binding affinity prediction indicated that most peptides 
were predicted to bind MHC-I complex (Figure 4).  However, in the case of replicate 2 of H28 and H211 we 
observed a lower percentage of predicted binding peptides compared to other samples, possible due to 
sample preparation/purification problems.
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Fig 4. Comparison of the peptide predicted to be strong/weak and non-binders. Prediction performed on 
peptides between 8 and 12mers inclusive using NetMHCPan 4.1. Peptides were classified as �strong binders� when 
their predicted �affinity percentile� was lower than 0.5 and �weak binders� when their predicted �affinity percentile� 
lays between 0.5 � 2. 
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Fig 5. Eluted peptides between 8 and 12mers inclusive binding specificity deconvolution. Heatmap illustrating the 
outcome of peptide-specificity deconvolution based on prediction performed using NetMHCPan 4.1. Red 
represents predicted strong binders, blue represents week binders. 



Fig 6. HLA allele-specific sequence motif from immunopeptides.  Comparison between the expected motifs of 
specific MHC alleles obtained from NetMHCpan 4.1 Motif viewer referred as �expected�, and the cluster results of 
the Eluted peptides referred as �Found�. 

Conclusion:
In conclusion, despite the intricate nature of MPM, with the right tools and analysis, identifying promising 
peptides for immunotherapy is feasible. By leveraging these insights, we can pursue the development of 
effective immunotherapies, offering hope for improved outcomes in treating this challenging disease.
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