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ABSTRACT: Mass spectrometry-based discovery of bacterial immu-
nopeptides presented by infected cells allows untargeted discovery of
bacterial antigens that can serve as vaccine candidates. However, reliable
identification of bacterial epitopes is challenged by their extremely low
abundance. Here, we describe an optimized bioinformatic framework to
enhance the confident identification of bacterial immunopeptides.
Immunopeptidomics data of cell cultures infected with Listeria
monocytogenes were searched by four different search engines, PEAKS,
Comet, Sage and MSFragger, followed by data-driven rescoring with
MS2Rescore. Compared with individual search engine results, this
integrated workflow boosted immunopeptide identification by an
average of 27% and led to the high-confidence detection of 18
additional bacterial peptides (+27%) matching 15 different Listeria
proteins (+36%). Despite the strong agreement between the search engines, a small number of spectra (<1%) had ambiguous
matches to multiple peptides and were excluded to ensure high-confidence identifications. Finally, we demonstrate our workflow
with sensitive timsTOF SCP data acquisition and find that rescoring, now with inclusion of ion mobility features, identifies 76%
more peptides compared to Q Exactive HF acquisition. Together, our results demonstrate how integration of multiple search engine
results along with data-driven rescoring maximizes immunopeptide identification, boosting the detection of high-confidence bacterial
epitopes for vaccine development.
KEYWORDS: mass spectrometry, Listeria monocytogenes, search engines, ion mobility, TIMS2Rescore, immunopeptides

■ INTRODUCTION
Antimicrobial resistance is an increasing worldwide healthcare
threat,1 urging preventive measures that include the develop-
ment of novel bacterial vaccines.2 The discovery of bacterial
epitopes and antigens is a crucial step to inform protective
vaccine formulations. In adaptive cellular immunity, peptides
derived from pathogenic proteins are presented by the major
histocompatibility complex (MHC)�human leukocyte anti-
gen (HLA) in human�in order to recognize and clear infected
cells. Self-peptides and peptides derived from intracellular
pathogens can be presented by MHC class I molecules after
their generation via proteasomal degradation and further
proteolytic maturation, leading to presentation of typically 9-
mer peptides by human HLA molecules.3 Isolation and mass
spectrometry (MS)-based identification of such peptides
presented on the surface of infected host cells is possible by
so-called immunopeptidomics, a valuable technique for
untargeted identification of putative bacterial antigens in the
context of vaccine design.4 In recent years, immunopeptido-

mics screens have identified epitopes of various bacterial
pathogens, including Listeria monocytogenes,5 Mycobacterium
tuberculosis6 and Salmonella typhimurium.7

Thirty years after the first MS-based detection of a handful
of immunopeptides,8 contemporary MS-based proteomics
achieves the sensitive identification of thousands of immuno-
peptides per sample. Increasing depth in immunopeptides is
facilitated by low-input MS instruments such as the timsTOF
instruments that incorporate ion mobility (IM) separation.9,10

TimsTOF instruments apply parallel accumulation-serial
fragmentation (PASEF), which accumulates a package of
ions while simultaneously separating another package of ions
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that is serially fragmented upon elution from the IM cell.11,12

Specifically for immunopeptidomics, customized ion mobility-
mass isolation windows, so-called “thunder polygons” due their
characteristic shape, have been applied to include singly
charged immunopeptides.9,10 Instruments not equipped with
an IM device are not able to distinguish singly charged peptide
ions from singly charged contaminants, and these ions are,
therefore, often excluded. To improve the MS-based detection
of immunopeptides, TMT derivatization has been used to
promote multiply charged peptide precursors and the
abundance of b-ions.13,14 Alongside data acquisition, several
advances were made in the computational identification of
immunopeptides from MS data. As immunopeptides contain
nontryptic ends, the complexity of the peptide search space is
vastly increased compared to standard tryptic peptide searches.
Consequently, immunopeptide identification is more challeng-
ing, and different search engines have been shown to exert a
certain bias and low consistency between identified immuno-
peptides.15,16 However, extending peptide-to-spectrum match
(PSM) search engine scores with additional orthogonal scoring
features based on predicted fragment ion intensities,17−19

retention time (RT)20 and more recently IM21,22 increases the
confidence and number of identified peptides. Such data-
driven rescoring was shown to boost immunopeptide
identification over 30%,9,19,22 and with the recent
TIMS2Rescore algorithm up to 71% more MHC class I
immunopeptides were reported when leveraging spectrum, RT
and IM predictions.23

Despite these technological advances, confident identifica-
tion of presented bacterial peptides remains particularly
challenging due their extremely low abundance.4 In a typical
infection experiment, over 99% of the identified immunopep-
tides are host self-peptides. The remaining peptides are
bacterial immunopeptides that require thorough inspection.
Follow-up experiments to ascertain identified bacterial
peptides as true hits are of the essence, especially given that
these identifications can be decisive in formulating vaccine
constituents for which experimental testing is time-consuming
and costly. Therefore, for further validation of bacterial
immunopeptides, synthetic peptides or heavy spike-in peptides
are often used, where coelution and similar MS/MS
fragmentation of the bacterial peptide and synthetic counter-
part should be observed.5,6 In addition, within a bacterial
infection setup, inclusion of noninfected host samples can
serve as a valuable negative control to select for bacterial
immunopeptides.5 Recent studies on cultured cells infected
with Mycobacterium tuberculosis and Listeria monocytogenes, a
foodborne bacterial model pathogen further referred to as
Listeria, revealed bacterial proteins represented by multiple
distinct peptides, thereby underlining their immunogenic
potential and allowing their prioritization as vaccine
candidates.4,5 Despite showing huge potential, the data
processing of these studies relied on a single search engine
without benefiting from recently developed spectral rescoring
tools.
To maximize the performance of immunopeptidomics data

analysis for bacterial epitope discovery, we here describe a
workflow integrating the results of four search engines, PEAKS
Studio 12, Comet, Sage, and MSFragger, that includes
rescoring with MS2Rescore for each engine in parallel.
Applying this workflow to label-free and TMT-labeled
fractions of a previously published immunopeptidomics data
set from Listeria-infected cells5 resulted in an additional 18

Listeria peptides matching 15 proteins, despite more stringent
selection criteria that avoid ambiguous spectrum-to-peptide
assignments. Moreover, reinjection and data analysis using a
timsTOF SCP instrument nearly doubled the number of
identified immunopeptides and allowed the detection of yet-
unobserved Listeria antigen candidates. Taken together, we
describe a high-performance computational framework for
immunopeptidomics studies and demonstrate its potential for
bacterial antigen discovery.

■ EXPERIMENTAL PROCEDURES

System Information

PEAKS Studio 1224 and IsobaricAnalyzer25 were run on a 20
CPU Windows system (64 GB RAM, 2.75 GHz, AMD EPYC
9454 processors). All other search engines, rescoring,
FlashLFQ quantification, and automated reports were run on
a 32 CPU Linux Ubuntu (v20.04.06) system (512 GB RAM,
2.75 GHz, AMD EPYC 9454 processors) in an automated end-
to-end search-to-reporting Python script.
Immunopeptide Identification

Q Exactive HF (.RAW) and timsTOF SCP (.d) data was
searched by four search engines in parallel: (i) MSFragger
version 4.1,26 (ii) Comet version 2023.01 rev. 2,27 (iii) Sage
version 0.14.7,28 and (iv) PEAKS Studio 12 (build
20240709).24 The raw mass spectral data was first
preprocessed and searched by MSFragger, whereafter recali-
brated mzML files29 were used for Sage, Comet and PEAKS
Studio. In the case of PEAKS studio, no mass correction or
chimera scan analysis is performed to search an identical set of
recalibrated MS/MS spectra, which facilitates downstream
integrations of PSMs. Spectra were searched against a
concatenated target-decoy (reverse) database comprised of
UniProtKB reference proteomes for human (UP00005640,
20596 proteins) and Listeria monocytogenes EGD
(UP000016703, 2847 proteins). For label-free searches, no
static modifications were set, and variable modifications were
Cys cysteinylation, Met oxidation, protein N-terminal
acetylation, and pyro-Glu formation from peptide N-terminal
Asp and Glu. For TMT-labeled fractions, variable Met
oxidation and Cys cysteinylation and static TMT10-plex
modification of peptide N-termini and Lys. An unspecific
peptide digestion option was used, restricting peptide length to
7−20 and mass 600−5000 Da. For Q Exactive HF data, a 10
ppm precursor mass tolerance was applied for all searches,
while using default fragment mass tolerances for Comet
(fragment bin tolerance 0.02), MSFragger (20 ppm), and
PEAKS Studio 12 (0.02 Da). For timsTOF SCP data, 15 ppm
were used as precursor and fragment mass tolerance for all
engines (0.015 fragment bin for Comet), except setting a 0.03
Da fragment mass tolerance for PEAKS Studio 12. The
optimized fragment mass tolerance for the main search set by
MSFragger was used for Sage searches (timsTOF SCP and Q
Exactive HF data). In the case of Sage, RT and IM model
fitting was used for PSM scoring, while the Deep Learning
Boost option was enabled for PEAKS Studio 12.
Immunopeptide Rescoring and Cross-Engine Integration

Search results of each search engine were rescored separately
using MS2Rescore,22,30 and peptides identified at 1% peptide
FDR after rescoring by each search engine were aggregated.
MSFragger, Sage and Comet each outputted a Percolator input
(.pin) file with search engine PSM scoring features. PEAKS
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Studio 12 was configured to export decoy hits (system settings
“detach-service” and “export-decoy” set to true), and all PSMs
were exported by setting the minimum required −lg10P value
to 0. PSM reports with search engine features were formatted

by custom Python scripts to a tab-separated value (TSV) file
used as input for MS2Rescore v3.1.0 (dev9).22,30 For both Q
Exactive HF and timsTOF data, DeepLC version 2.2.3220 was
used to score PSMs by generating features describing the

Figure 1. Integration of multiple search engines and rescoring boost immunopeptide identification. (A) Listeria-infected and uninfected HeLa or
HCT-116 cells were subjected to both label-free LC-MS/MS on a Q Exactive HF instrument as well as TMT-labeling and LC-MS/MS analysis on
a Fusion Lumos instrument after prefractionation.5 Resulting MS data was searched by four search engines in parallel and the search results of each
engine were rescored by MS2Rescore v330 independently. All peptide and PSM identifications with a peptide q-value <1% were aggregated and
further subjected to quantification, HLA binding prediction and Gibbs clustering. Created with BioRender.com. (B) Rescoring by MS2Rescore
boosts the number of identified peptide sequences per search engine and across engines. (C) Annotated MS2 spectrum (HeLa label-free replicate
2, scan 52812) matched to both ‘RAAPLLQLL’ by PEAKS Studio 12 and ‘RAALPLQLL’ by Comet. The experimental spectrum is displayed on
top and the MS2PIP-predicted spectrum at the bottom, indicating the Pearson spectrum correlation calculated by MS2Rescore (‘spec_pearson’
feature). (D) Integrating the results of four search engines after rescoring further boosts the immunopeptide detection. The dotted line indicates
the total number of unique, identified peptide sequences after rescoring per sample.

Journal of Proteome Research pubs.acs.org/jpr Technical Note

https://doi.org/10.1021/acs.jproteome.4c00864
J. Proteome Res. 2025, 24, 2141−2151

2143

https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig1&ref=pdf
http://BioRender.com
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.4c00864?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


deviations to the predicted peptide RT. In addition, MS2PIP
Immuno-HCD22, TMT and timsTOF9 models were used to
compare and rescore against predicted b/y-ion intensities for
Orbitrap label-free, Orbitrap TMT-labeled and timsTOF SCP
label-free data, respectively. Lastly, in case of timsTOF data,
peptide collision cross section (CCS) values were predicted by
IM2Deep version 0.1.323 and used for rescoring. Mokapot31

was run before and after extending the PSM scoring features
using the default linear support vector machine (SVM) model,
and peptides and their PSMs were filtered at a 1% peptide
FDR. We integrated the results of the four search engines at a
spectrum-level, keeping track of PSMs supported by multiple
search engines or the rare cases (<1%) where a spectrum was
matched to distinct peptides. Peptides having ambiguous
PSMs were flagged and excluded for further consideration to
err on the side of caution.
Immunopeptide Quantification
In case of label-free Q Exactive HF data, FlashLFQ version
1.2.532 was used to perform label-free quantification. A single
FlashLFQ input file containing all combined search engine
results was used (requiring filename, RT, precursor change,
peptide sequence, and mass). Matching-between-runs was
enabled with a 5 ppm tolerance and an RT window of 2.5 min,
requiring two isotopes and only quantifying the identified
peptide precursor charge. In case of TMT10plex labeled data,
FileConverter and IsobaricAnalyzer modules part of the
OpenMS platform25 were used to preprocess Thermo RAW
files and subsequently extract reporter ion quantifications,
respectively. For HeLa data, Listeria-infected channels included
127N, 127C, 128N and 128C, while for uninfected controls
129N, 129C, 130N and 130C were used. In the case of HCT-
116 data, Listeria-infected channels included 126, 127N, 127C
and 128N, while for uninfected controls 129C, 130N, 130C
and 131 were used. Similar to Mayer et al.,5 quantification
results were filtered for at least two intensity values in either
uninfected or Listeria-infected conditions in Perseus.33 Missing
values were imputed from a normal distribution around the
detection limit.
HLA Binding Prediction and Gibbs Clustering

Standalone versions of NetMHCpan-4.1b34 and NetMHCII-
pan-4.335 were used to predict the binding strength of
immunopeptides to HeLa and HCT-116 MHC class I and II
alleles, respectively. In the case of MHC class I, these included
HLA-A*03:19, HLA-A*68:02, HLA-B*15:03 and HLA-
C*12:03 for HeLa, while HLA-A*01:01, HLA-A*02:01,
HLA-B*45:01, HLA-B*18:01, HLA-C*07:01 and HLA-
C*05:01 were used for HCT-116. Alleles with the strongest
predicted binding (lowest %Rank score) were used in the final
reports. Unsupervised alignment and clustering of all 8- to 12-
mer peptides was performed using GibbsCluster 2.036 using
recommended settings for MHC class I immunopeptides of
length 8−13 (motif length 9, max deletion length 4, max
insertion length 1).
Reports and Visualization
All data processing steps were executed using a custom Python
script (Python version 3.8.10). Data organization was handled
using pandas.37 Plots were generated using matplotlib38 and
seaborn.39 Sequence logos were generated using Logomaker.40

TimsTOF LC-MS/MS Analysis

Immunopeptides from Listeria-infected or uninfected HeLa
cells were isolated as previously described.5 Leftover, dried

peptide mixture were redissolved in 17 μL of loading solvent A
(0.1% TFA in water/acetonitrile (ACN) (99.5:0.5, v/v)) of
which 8 μL was injected for LC-MS/MS analysis on an
Ultimate 3000 RSLC nanoLC in-line connected to a timsTOF
SCP mass spectrometer (Bruker). Given that for the previous
Q Exactive HF analysis 5 out of 15 μL was used,5 we injected
here approximately 25% of the peptide material compared to
the initial study. Trapping was performed at 20 μL/min for 2
min in loading solvent A on a 5 mm trapping column (Thermo
Scientific, Pepmap, 300 μm internal diameter (I.D.), 5 μm
beads). The sample was further separated on a reverse-phase
column (Aurora elite 75 μm × 150 mm 1.7 μm particles,
IonOpticks) following elution from the trapping column by a
linear gradient starting at 0.5% MS solvent B (0.1% FA in
water/ACN 20:80 (v/v)) at a flow rate of 250 nL/min for 30
min reaching 37.5% MS solvent B, increasing MS solvent B to
55% MS solvent B after 38 min, finally increasing further to
70% MS solvent B after 40 min, followed by a wash for 5 min
and re-equilibration with 99.5% MS solvent A (0.1% FA in
water). The flow rate was decreased from 250 to 100 nL/min
at 20 min and increased again to 250 nL/min at 40 min. A ten
PASEF/MSMS scan acquisition method was used in DDA-
PASEF mode with a precursor signal intensity threshold at 500
arbitrary units. An adapted polygon in the m/z-IM plane was
used to include HLA-I singly charged precursors (Supple-
mentary Table S1). The mass spectrometer was operated in
nonsensitive mode with an accumulation and ramp time of 100
ms, analyzing in MS from 100 to 1,700 m/z. Precursors were
isolated with a 2 Th window below m/z 700 and 3 Th above
and actively excluded for 0.4 min when reaching a target
intensity threshold of 20,000 arbitrary units. A range from 100
to 1,700 m/z and 0.7 to 1.25 vs cm−2 was covered with a
collision energy applied according to the ion mobility range in
Supplementary Table S2.

■ RESULTS AND DISCUSSION

Multiple Search Engines and Rescoring Boost
Immunopeptide Identification

In our previous work we identified 68 Listeria immunopeptides
in infected HCT-116 and HeLa cell cultures using Peaks
Studio 10.5 at a 1% PSM Q-value.5 Purified immunopeptides
from four infected and four uninfected replicate cultures were
subjected twice to Orbitrap liquid chromatography-tandem
mass spectrometry (LC-MS/MS) analysis, once label-free and
once in combination with TMT-labeling to increase
immunopeptide identification (Figure 1A).5,13,14 Here, we
aimed to improve the bioinformatic analysis of these data by
developing an in silico workflow that leverages the comple-
mentary power of four search engines with the follow-up
rescoring of PSMs. Label-free and TMT-labeled runs of both
cell cultures were researched with MSFragger,26 Comet,27

Sage,28 and PEAKS Studio 1224 to identify MHC Class I
immunopeptides (see Experimental Procedures). Resulting
PSMs outputted by each engine were rescored separately using
MS2Rescore v3,22,30 extending search engine score features
(e.g., hyperscore, mass accuracy, and others) with orthogonal
scoring features derived from MS2PIP17 and DeepLC.20

Rescoring of the label-free search engine results of Sage,
Comet and MSFragger by MS2Rescore resulted in a dramatic
increase of identified peptide sequences (peptide Q-value ≤
1%) ranging from 30 up to 89% in the Listeria-infected HeLa
and HCT-116 cells (Figure 1B). In the case of PEAKS Studio
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12, the built-in ‘Deep learning boost’ already leverages
spectrum and RT scoring features, explaining the high
identification numbers prior MS2Rescore. Rescoring of
TMT-labeled samples also yielded an additional 4 to 28% of
identifications in both cell lines. Unlike the Immuno-HCD
MS2PIP model22 for label-free (nontryptic) immunopeptides,
rescoring of TMT-labeled fractions was performed using the
MS2PIP TMT Orbitrap HCD model. Despite being trained on
TMT-labeled tryptic peptides, this model delivered a median
correlation between 0.83 and 0.87 (Figure S1). This matches
the performance observed for tryptic peptides,30 justifying its
usage for TMT-labeled immunopeptides.
After rescoring, we integrated the identified peptides and

PSMs of the four search engines. A total of 120,696 PSMs
(peptide Q-value ≤ 1%) to a single peptide were made by a
single or by multiple engines (Data S1A), of which 103,639
(85.9%) were supported by at least two search engines. In
addition to spectra allocated to a single peptide, 1,010 MS2
spectra (<1% of total PSMs) were assigned by search engines
to different peptides (Data S1B). These mostly included
ambiguous matches to peptides with isobaric Ile to Leu
substitutions and minor peptide sequence variations. For

instance, a spectrum in the HeLa label-free sample was
matched to ‘RAAPLLQLL’ by PEAKS and ‘RAALPLQLL’ by
Comet�therefore peptides with an exchange of the fourth and
fifth amino acid (‘PL’ to ‘LP’) that lack fragment ions to
distinguish between both peptides (Figure 1C). Such
ambiguity due to incomplete fragmentation spectra is prevalent
in immunopeptidomics,41 facilitated by the abundance of
candidate PSMs associated with nontryptic, unspecific searches
(especially when searching multiple species). Although scoring
features such as the Pearson correlation score, e.g., 0.98 for
‘RAAPLLQLL’ compared to 0.68 for ‘RAALPLQLL’, can
suggest the most probable PSM candidate, or chimeric spectra
can contain fragments of coeluting peptides, we erred on the
side of caution by not considering these PSMs.
At the peptide level, integrating PSMs assigned to a single

peptide by one or multiple search engines after rescoring
boosted the number of detected immunopeptides, on average,
by 27% (Figure 1D). Only peptides with at least a single
uniquely assigned PSM were retained, while keeping track of
the number of ambiguous PSMs to flag potentially unreliable
identifications. In total there were 20,664 peptides identified
with uniquely assigned PSMs (Data S2A). Conversely, 361

Figure 2. Integration of multiple search engines and rescoring yields complementary immunopeptide identifications. (A) Number of unique
peptide sequences identified per amino acid length. Peptide sequences predicted as strong binder (SB, %Rank <0.5) or weak binder (WB, %Rank
<2) by NetMHCpan-4.134 are indicated in red and blue, respectively. Other peptides (nonbinder, NB) are indicated in gray. (B) Venn diagram
showing the overlap of identified peptide sequences predicted as NetMHCpan-4.1 strong binders per search engine. (C) Sequence logo of peptides
predicted as strong binder (SB, %Rank <0.5) by NetMHCpan-4.1.34 Logos were made by Logomaker40 using the peptide 9-mer binding core
predicted by NetMHCpan-4.1.
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peptides that were solely identified by ambiguous PSMs were
discarded (Data S2B). As such, the integration of multiple
search engine results not only yields additional immunopeptide
identifications, but also flags spectrum-to-peptide ambiguities.
After identification, the ensemble of retained PSMs across all

search engines was quantified by FlashLFQ32 or IsobaricAna-
lyzer25 for label-free and TMT-labeled peptides, respectively.
Peptides identified by all four search engines showed the
highest intensity, while peptides identified by a single search
engine or those gained by rescoring were relatively less
abundant (Figure S2), suggesting that the use of multiple

search engines and rescoring benefits the identification of low
intensity immunopeptides. In addition, HLA class I binding
prediction was performed by NetMHCpan-4.134 and un-
supervised alignment and clustering of all 8- to 12-mer
peptides was performed using GibbsCluster 2.0.36 As a first
sign of high-quality immunopeptide detection, the presented
HLA class I peptides were predominantly 9-mers, as indicated
by the sequence length histogram of identified peptides
(Figure 2A). We quantified a total of 9,924 9-mers, which is
an additional 1,408 9-mers (+17.5%) compared to our
previous study5 using PEAKS Studio 10.5 (Figure S3).

Figure 3. Detection of additional high confidence Listeria immunopeptides. (A) Filters applied for selecting bacterial immunopeptides, resulting in
a final number of 86 high-confidence Listeria peptides. (B) Annotated MS2 spectrum (HCT-116 cells TMT fraction 1, scan 19403) matched to
‘TMT-TIDELAGKTMTI’ by Sage or matched to ‘TMT-TIDEIQKTMTL’ by MSFragger, Comet, and PEAKS. The experimental spectrum is
displayed on top and the MS2PIP-predicted spectrum at the bottom with their respective Pearson correlation. (C) Venn diagram showing the
overlap of high-confidence and filtered out Listeria peptides in this study to the high-confidence peptides described in Mayer et al.5 (D) Imputed
and unimputed intensity heatmaps of high confidence Listeria immunopeptides for all four experimental conditions. Z-scored log2 intensities were
displayed after FlashLFQ32 label-free quantification (LFQ) and TMT reporter ion intensities outputted by IsobaricAnalyzer.25 Missing values were
imputed by Perseus.33

Journal of Proteome Research pubs.acs.org/jpr Technical Note

https://doi.org/10.1021/acs.jproteome.4c00864
J. Proteome Res. 2025, 24, 2141−2151

2146

https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.4c00864/suppl_file/pr4c00864_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.4c00864/suppl_file/pr4c00864_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.4c00864/suppl_file/pr4c00864_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.4c00864?fig=fig3&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.4c00864?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Moreover, 86 to 91% of identified 9-mers were predicted to
exert strong binding (SB) to HeLa or HCT-116 HLA class I
alleles (Figure 2A). Evaluating the overlap of identified SB
peptides (8 to 12-mers) between the different search engines
revealed that 57 to 69% of SB peptides were confidently
identified by all four engines (Figure 2B). Conversely, 9 to
13% of all SB peptides were only identified by a single search
engine, showcasing how hundreds of immunopeptide identi-
fications are gained by our multiengine search strategy with
follow-up rescoring. As also reflected by the Gibbs clustering
analysis (Figure S4−S6), HLA-A*68:02, HLA-B*15:03 and
HLA-C*12:03 were predominant alleles in HeLa samples, and
HLA*A01:01, HLA*A02:01, HLA*B18:01 and HLA*B45:01
were predominant in HCT-116 cells (Figure 2C). Notably,
HLA-B*18:01 presented 245 and 405 SB 8-mer peptides in
HCT-116 label-free and TMT samples (Figure S7),
respectively, matching the earlier-observed peptide length
binding preference of this allele.42

Detection of Additional High Confidence Listeria
Immunopeptides
Within the host−pathogen infection setup, a major goal is the
identification of bacterial Listeria immunopeptides. With the
bacterial Listeria proteome being ∼13-fold smaller than the

human proteome and typically far less abundant than the host
proteome in infected cells, confident identification of bacterial
immunopeptides is challenging. Given that the identified
bacterial immunopeptides inform putative vaccine targets,
thorough scrutinization of obtained matches is of the essence.
Therefore, multiple quality checks are in place to verify
bacterial spectral matches within our workflow (Figure 3A). Of
the 173 peptides matched to Listeria peptides, 20 Listeria
peptides were identified from spectra assigned to multiple
peptides and, therefore, removed (Data S3). For instance, in
the HCT-116 cells a single spectrum was matched to both
‘TMT-TIDELAGKTMTI’ (Listeria LMON_0362) by Sage and
‘TMT-TIDEIQKTMTL’ (human DDB1) by PEAKS, MSFrag-
ger and Comet (Figure 3B). Both peptides are isobaric, with
two Leu/Ile substitutions and the combination of Ala and Gly
equaling the mass of Gln. The human peptide is most likely
true, given its identification by three different search engines
and a high Pearson correlation (0.97) to the MS2PIP predicted
spectrum. Several ambiguous PSMs included matches to
peptides with Leu/Ile substitutions, and an additional protein
BLAST search of the remaining 153 Listeria peptide sequences
to an extended human protein database comprised of all
human UniProtKB and noncanonical translation proteins of

Figure 4. Listeria virulence factors are represented by multiple immunopeptides. (A) The number of unique immunopeptides identified per Listeria
protein is shown as a histogram. The number of identified peptides per sample is displayed in a heatmap. (B) Genome view of the Listeria
Pathogenicity Island 1 region44 (NC_025568 sequence, numbers in kilobases) with identified immunopeptides for five out of six genes. The plcB
peptide ‘YKLGLAIHY’ was a novel immunopeptide identified in this study (*). (A−B) Immunopeptides predicted as strong binders by
NetMHCpan-4.1 (%Rank <0.5) are indicated in red, weak binders (% rank <2) in blue and nonbinders (%Rank >2 or no 8- to 12-mers) in gray.
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nuORFdb43 revealed one additional ambiguous assigned
peptide that was also removed (Data S3).
As a final quality criterion, we made use of the uninfected

samples as negative control, which logically should lack
bacterial peptide identifications or matched intensity signals.
Following the filtering criteria of Mayer et al.,5 we required the
remaining 152 Listeria peptides to be quantified in at least two
out of four Listeria-infected replicate samples and with a higher
average abundance compared to the uninfected conditions.
This resulted in a final number of 86 unique highly confident
Listeria immunopeptides matching 57 proteins (Figure 2D,
Data S3), with 69 (80.2%) peptides predicted to bind to HCT-
116 or HeLa HLA alleles (NetMHCpan-4.1%Rank ≤ 2) (Data
S3). This represents an additional 18 Listeria immunopeptides
(+26.5%) and 15 proteins (+35.7%) compared to our initial
study.5 While we reidentified 57 of the 68 initially reported
peptides (Figure 3C), we identified 29 novel high confidence
Listeria peptides matching to 25 novel antigens, including 23
HLA class I-binding peptides. Conversely, 11 peptides from
our previous study were not retained by the present pipeline,
of which seven did not meet the set filtering criteria for
quantification (Figure 3C). Other peptides such as
‘EVERPSLGV’ were identified at a PSM q-value <1% after
rescoring, but were withheld in our analysis as they had high
peptide q-values. Interestingly, although Listeria immunopep-
tides only constitute a small fraction of the identified
immunopeptidome, in the label-free data sets these peptides

were of similar intensity compared to human immunopeptides
(Figure S2D).
Listeria Virulence Factors Are Represented by Multiple
Immunopeptides

Similar to our initial study,5 there is an unequal distribution of
the number of identified high confidence immunopeptides
across the 57 Listeria proteins (Figure 4A). Fifteen Listeria
proteins (previously 13) were represented by multiple
immunopeptides (Figure 4A), including five out of six
virulence factors encoded in the Listeria Pathogenicity Island
144 (Figure 4B): plcA (LMON_0199, two peptides), hly/LLO
(LMON_0200, six peptides), mpl (LMON_0201, two
peptides), actA (LMON_0202, three peptides) and plcB
(LMON_0203, two peptides). Instead of a single peptide,
we now identified two peptides mapping to phospholipase C
plcB. Also, instead of seven, there were now ten bacterial
proteins identified in both infected HeLa and HCT-116 cell
cultures, including the rather poorly characterized oligopeptide
ABC transporter, periplasmic oligopeptide-binding protein
OppA (LMON_0149, seven peptides), a putative cell
membrane protein that was again detected as most represented
antigen and vaccine candidate.5 Taken together, these data
demonstrate the enhanced capability of our optimized
immunopeptide identification and filtering strategy to detect
highly confident immunopeptides from bacterial origin.

Figure 5. Improved immunopeptide identification by DDA-PASEF acquisition. (A) MS2PIP timsTOF model performance, displaying a histogram
of the Pearson correlation for all PSMs. (B) Correlation of DeepLC-predicted and experimental retention time (RT). (C) Correlation of the
IM2Deep-predicted and experimental collision cross section (CCS). (D) TIMS2Rescore23 rescoring and integration of multisearch engine results
boosts immunopeptide identification. (E) Representative peptide ion identifications plotted across the inversed ion mobility (1/K0) and m/z
dimensions. Identified 9-mer peptides are plotted in red, and peptides of other lengths are plotted in blue.
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Improved Immunopeptide Identification by DDA-PASEF
Acquisition

TimsTOF instruments were reported to show enhanced
sensitivity in immunopeptide detection.9,10 To complement
the Q Exactive HF-based analysis of our samples reported
before5 and above, we reinjected 25% of the leftover HeLa
label-free samples on a timsTOF SCP instrument. More
specifically, we analyzed the samples using 1 h nanoLC runs
coupled to DDA-PASEF data acquisition with an enlarged
polygon in the ion cloud plane to include singly charged
peptide ions for fragmentation selection, as reported before.9,10

Again, we integrated the rescored results of four search
engines, however, now using the recent TIMS2Rescore
algorithm that incorporates IM2Deep for prediction and
rescoring of peptide collision cross section (CCS) values.23

Overall, MS2PIP-derived features contributed greatly to
rescoring (Figure S8), with a median Pearson correlation
coefficient of 0.88 observed for experimental and MS2PIP-
predicted spectra for PSMs by MSFragger (Figure 5A),
corroborating previous timsTOF results.9 Similarly, we found
a strong correlation between the predicted and observed RT
and CCS values (Figure 5B−C). Rescoring and integration of
the four search engine results again significantly boosted the
number of identified immunopeptides, delivering a total of
6,876 identified immunopeptide sequences (Figure 5D, Data
S4). This represents a 79% increase over the 3,845 peptide
sequences initially identified on a Q Exactive HF instrument
using longer 3 h nanoLC runs (Data S2A, Figure 1B). 3,363
peptides (out of 6,876 or 49%) were 9-mers, of which 2,850
(out of 3,363 or 84%) were predicted as SB peptides by
NetMHCpan-4.1 (Figure S9A), again indicating high quality
enrichment of immunopeptides in these samples. As
anticipated, the enlarged isolation polygon promoted singly
charged immunopeptide identifications, with 2,024 9-mer
peptides (out of 3,363 or 60%) matched by a singly charged
peptide precursor (Data S3). Concomitantly, MHC class I
immunopeptides show typical singly charged ion clouds at 850
to 1100 m/z and at higher inverse reduced ion mobility (1/K0)
of ∼1.4−1.6, while doubly charged 9-mers peak at m/z values
between 450 to 600 and at ∼0.75−0.9 1/K0 (Figure 5E). As
anticipated, singly charged peptides were less frequently
detected on the Q Exactive HF instrument, with only 23%
of 9-mer peptides matched to a singly charged precursor in this
data set (Data S2E). Accordingly, from 1,691 9-mers uniquely
detected on the timsTOF SCP but not the Q Exactive HF, 700
were exclusively identified by a singly charged precursor.
Looking for bacterial peptides, we identified a total of 48
Listeria peptides with unambiguously assigned PSMs and not
matching an extended human database (with Leu/Ile
permutation). Since FlashLFQ did not yet support timsTOF
label-free quantitation at the time of writing, we continued
with 33 Listeria peptides that were identified only in Listeria-
infected replicates but absent in all uninfected replicates, which
is more than double the amount of Listeria immunopeptides
detected on Q Exactive HF (14 immunopeptides, Figure 3D).
These 33 immunopeptides were derived from 29 Listeria
proteins (Figure S9B), including eight proteins that were not
identified previously in the (re)analysis of the Listeria data set
(Figure 4 and Figure S8). Interestingly, these include iap
(invasion-associated protein) or endopeptidase p60, a well-
known virulence factor that was shown to be highly
immunogenic and facilitate protective immunity against
Listeria.45,46

■ CONCLUSIONS
We describe a bioinformatic pipeline incorporating four search
engines and rescoring to maximize the number of confidently
identified bacterial immunopeptides. Overall, we found that
immunopeptide identification numbers are boosted by both
rescoring and the integration of multiple search engine results.
We demonstrate the efficacy of TMT and Immuno-HCD
models for rescoring immunopeptides recorded on Q Exactive
HF as well as on timsTOF SCP instruments. On the latter
instrument, the additional ion mobility dimension was also
exploited for rescoring using the novel predictor IM2Deep
within TIMS2Rescore.23 Compared to a Q Exactive HF,
acquisition on a timsTOF SCP instrument resulted in an
overall 76% increase in identified immunopeptides, while the
number of detected bacterial immunopeptides doubled.
Compared to our previous study where 42 Listeria antigens
were identified, an additional 33 Listeria proteins were detected
in this work, eight of which were only recorded on the
timsTOF SCP (Figure S10). Within this comparison, it should
be kept in mind that now a more stringent peptide Q-value of
1% was applied and that PSMs with ambiguous matches to
multiple peptides were filtered out. Such additional checking of
spectrum-to-peptide ambiguity is important, as ion series are
often incomplete and a high ambiguity between host and
bacterial peptide precursors is evident due to nonenzymatic
search settings. Finally, we envision extension of our
multiengine rescoring pipeline with other search engines
compatible with PSM rescoring to further maximize
immunopeptide identifications and also for applications
beyond bacterial antigen discovery such as viral or cancer
(neo)epitope discovery.

■ ASSOCIATED CONTENT
Data Availability Statement

The timsTOF SCP mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE partner
repository47 with the data set identifier PXD055547. Q
Exactive HF data from Mayer et al.,5 reanalyzed in this
study, is available via the data set identified PXD031451. Code
used for the automated processing is available at https://
github.com/patrick-willems/immunopeptidomics and pipeline
output used for this work is deposited at the Open Science
Framework (OSF) project with DOI 10.17605/OSF.IO/
7DKSA.
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CCS, collision cross section; LF, label-free; NB, nonbinder; SB,
strong binder; TMT, tandem mass tag; WB, weak binder.
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