A glycomics and proteomics study of aging and Parkinson’s disease in human brain

Raghunathan, Rekha, et al. “A Glycomics and Proteomics Study of Aging and Parkinson’s Disease in Human Brain.” Scientific Reports, vol. 10, no. 1, 30 July 2020, doi:10.1038/s41598-020-69480-3.


Previous studies on Parkinson’s disease mechanisms have shown dysregulated extracellular transport of α-synuclein and growth factors in the extracellular space. In the human brain these consist of perineuronal nets, interstitial matrices, and basement membranes, each composed of a set of collagens, non-collagenous glycoproteins, proteoglycans, and hyaluronan. The manner by which amyloidogenic proteins spread extracellularly, become seeded, oligomerize, and are taken up by cells, depends on intricate interactions with extracellular matrix molecules. We sought to assess the alterations to structure of glycosaminoglycans and proteins that occur in PD brain relative to controls of similar age. We found that PD differs markedly from normal brain in upregulation of extracellular matrix structural components including collagens, proteoglycans and glycosaminoglycan binding molecules. We also observed that levels of hemoglobin chains, possibly related to defects in iron metabolism, were enriched in PD brains. These findings shed important new light on disease processes that occur in association with PD.