Analysis of the proteins secreted by Trichoderma harzianum P49P11 under carbon-limited conditions

Gelain, Lucas, et al. “Analysis of the Proteins Secreted by Trichoderma Harzianum P49P11 under Carbon-Limited Conditions.” Journal of Proteomics, vol. 227, 2020, p. 103922., doi:10.1016/j.jprot.2020.103922.

Abstract

The wild type strain Trichoderma harzianum was able to synthesize enzymes that can catalyse the hydrolysis of p-nitrophenyl-β-D-glucopyranoside (PNPGase) in glucose-limited chemostat cultures. Fructose/glucose and sucrose conditions provided low levels of PNPGase activity. To investigate whether under these conditions other enzymes were produced, a shotgun proteomics analysis of their supernatants was performed. The analysis has indicated that the different carbon sources used influenced the amounts of proteins secreted including 1,3-beta-glucanosyltransferase, alpha-1,2-mannosidase, alpha-galactosidase and glucan 1,3-beta-glucosidase. The analysis has also suggested the presence of beta-glucosidase, which could also be represented by PNPGase activity. Intracellular metabolites were quantified during PNPGase production for the condition using 20 g/L of glucose in the feed and differences were observed, indicating that intracellular glucose could be inhibiting PNPGase production.

Significance

This work shows that sugars such as glucose, fructose/glucose and sucrose can be used as substrates for the continuous synthesis of different enzymes under carbon-limited conditions by Trichoderma harzianum. As far as we know, this is the first work about the continuous synthesis of enzymes under carbon-limited conditions suggesting that different easily assimilated carbon sources can be used to generate different enzymatic cocktails. Each enzyme or uncharacterized protein suggested by shotgun proteomics has the potential to become a promising product for biotechnological applications.