Antarctic krill derived peptide as a nanocarrier of iron through the gastrointestinal tract

Wang, Tongtong, et al. “Antarctic Krill Derived Peptide as a Nanocarrier of Iron through the Gastrointestinal Tract.” Food Bioscience, vol. 36, 2020, p. 100657., doi:10.1016/j.fbio.2020.100657.

Abstract

Antarctic krill (Euphausia superba) might have specific peptides that chelate iron ions and are iron carriers. In this study, iron-binding peptides were isolated from Antarctic krill using enzymatic (trypsin) hydrolysis and immobilized metal affinity chromatography (IMAC); the binding mode and surface morphology of Antarctic krill peptides (AKP)-iron complexes as well as their iron delivery behavior in the gastrointestinal tract were investigated. Results showed that the AKP bound 79.3% of available iron from the enzymatic hydrolysis for 180 min. The contents of negatively-charged amino acids (Asp and Glu) on the AKP showed a positive correlation (r = 0.80) with iron-binding activities (the data includes Asn and Gln), while positively-charged amino acids showed a negative correlation (r = −0.83). Moreover, His, Ser and Thr on the AKP were also involved in the iron-binding activities. Iron-binding peptides from Antarctic krill hydrolysates, isolated using IMAC-Fe3+ and identified using HPLC-MS/MS, showed a mass of 712–2451 Da, and were enriched in Asp (Asn), Glu (Gln), His, Ser or Thr. The iron ions mainly bound to carboxyl groups of AKP, thus forming nano-scale, spherical particles. The iron nanocarriers formed by AKP showed a significant iron transport activity after simulated gastrointestinal digestion, as compared to FeSO4 (P < 0.05). The results suggested that the AKP-iron nanocomposite has the potential to be a nutraceutical supplement for improving iron absorption.