Comparative proteomics reveals genetic mechanisms underlying secondary hair follicle development in fine wool sheep during the fetal stage

Guo, Tingting, et al. “Comparative Proteomics Reveals Genetic Mechanisms Underlying Secondary Hair Follicle Development in Fine Wool Sheep during the Fetal Stage.” Journal of Proteomics, 2020, p. 103827., doi:10.1016/j.jprot.2020.103827.


The aim of this study was to investigate the genetic mechanisms underlying wool production by characterizing the skin protein profile and determining the proteomic changes that occur as a consequence of development in wool-producing sheep using a label-free proteomics approach. Samples were collected at four stages during gestation (87, 96, 102, and 138 days), and every two consecutive stages were statistically compared (87 versus 96, 96 versus 102, and 102 versus 138 days). We identified 227 specific proteins in the sheep proteome that were present in all four stages, and 123 differentially abundant proteins (DAPs). We also observed that the microstructure of the secondary follicles changed significantly during the development of the fetal skin hair follicle. The screened DAPs were strictly related to metabolic and skin development pathways, and were associated with pathways such as the glycolysis/gluconeogenesis. These analyses indicated that the wool production of fine wool sheep is regulated via a variety of pathways. These findings provide an important resource that can be used in future studies of the genetic mechanisms underlying wool traits in fine wool sheep, and the identified DAPs should be further investigated as candidate markers for predicting wool traits in sheep.