Isolation and Identification of Lipid-Lowering Peptides from Sacha Inchi Meal

Wang, Kai, Xiaofei Liu, and Xuewu Zhang. “Isolation and Identification of Lipid-Lowering Peptides from Sacha Inchi Meal.” International Journal of Molecular Sciences 24.2 (2023): 1529.


Sacha inchi meal (SIM) is a by-product of sacha inchi (considered as a “super-food”) processing. In previous studies, we found that SIM protein hydrolysates exhibited pancreatic lipase inhibition activity. In this study, 10 bioactive peptides from those hydrolysates were identified. The top five peptides (NLYYKVV (NV-7), WWYVK (WK-5), WLLMWPYK (WK-8), EGLLMWPY (EY-8), and FPFFGYVWK (FK-9)) with strong pancreatic lipase inhibition activity had IC50 values of 34.01–246.50 µM, and displayed various inhibition types (mixed, non-competitive, and competitive type) by enzyme inhibition kinetics analysis. Fluorescence quenching analysis demonstrated that the interaction between the peptides and pancreatic lipase was mainly hydrogen bond and van der Waals force. The key residues involved in the peptide–enzyme interaction were determined by molecular docking. Moreover, the top two peptides were found to significantly inhibit fat accumulation and regulate lipid metabolism by alleviating the level of reactive oxygen species in HepG2 cells. Collectively, sacha inchi meal-derived peptides displayed potent lipid-lowering activity and could be used as materials of functional food.