iTRAQ-based quantitative proteomic profiling of the immune response of the South African abalone, Haliotis midae


The South African abalone Haliotis midae is a commercially important species farmed at high densities in land-based aquaculture systems. Disease outbreaks have had a severe financial impact on the abalone industry yet the molecular mechanisms underlying the immune response of H. midae remain obscure. In this study, a comparative shotgun proteomics approach using iTRAQ coupled with LC-MS/MS was employed to investigate H. midae proteome changes in response to Vibrio anguillarum challenge. A total of 118 non-redundant, unique haemocyte proteins were identified and quantified, with 16 proteins significantly regulated. Hierarchical clustering and pathway analysis uncovered a coordinated response dominated by calcium and cAMP signalling via activation of MAPK cascades. Early up-regulated biological processes involve phagocytosis, nitric oxide production and ATP-synthesis, whilst down-regulated responses were predominantly involved in the regulation of apoptosis. The late up-regulated response involved protein kinase activity and detoxification processes. Expression of selected proteins was validated by Western blot. A putative allograft inflammatory factor-1 protein was further selected to establish its functional molecular role in haemocytes. Confocal imaging revealed that allograft inflammatory factor-1 regulates phagocytosis via a functional interaction with filamentous actin. This is the first time a high-throughput proteomics approach has been used to investigate the immune response of H. midae.