Multi-omics analysis provides insights intro lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts

Niu, Mengyang, et al. “Multi-omics analysis provides insights intro lysine accumulation in quinoa (Chenopodium quinoa Willd.) sprouts.” Food Research International (2023): 113026. https://doi.org/10.1016/j.foodres.2023.113026

Abstract

Lysine, the first limiting essential amino acid, the deficiency of which seriously affects the health of human and animals. In this study, quinoa germination significantly increased the nutrients, especially lysine content. To better understanding the underlying molecular mechanism of lysine biosynthesis, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics, RNA-sequencing (RNA-Seq) technology and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) platform-based phytohormones analyses were conducted. Through proteome analyses, a total of 11,406 differentially expressed proteins were identified, which were mainly related to secondary metabolites. The lysine-rich storage globulins and endogenous phytohormones probably contributed the increased lysine content in quinoa during germination. Furthermore, aspartic acid semialdehyde dehydrogenase is essential for lysine synthesis in addition to aspartate kinase and dihydropyridine dicarboxylic acid synthase. Protein-protein interaction analysis indicated lysine biosynthesis is associated with “amino metabolism” and “starch and sucrose metabolism”. Above all, our study screens the candidate genes participated in lysine accumulation and explores the factors affected lysine biosynthesis by multi-omics analysis. These information not only paves a foundation for breeding lysine-rich quinoa sprouts but also provides valuable multi-omics resource to explore the characteristic of nutrients during quinoa germination.