Radical scavenging activities of peptide from Asian clam (Corbicula fluminea) and its protective effects on oxidative damage induced by hydrogen peroxide in HepG2 cells


CGA-N12, an antifungal peptide derived from chromogranin A, has specific antagonistic activity against Candida spp., especially against Candida tropicalis, by inducing cell apoptosis. However, the effect of CGA-N12 on the Candida cell wall is unknown. The Candida protein KRE9, which possesses β-1,6-glucanase activity, was screened by affinity chromatography after binding to CGA-N12. In this study, the effect of CGA-N12 on KRE9 and the interaction between CGA-N12 and KRE9 was studied to clarify the effect of CGA-N12 on C. tropicalis cell wall synthesis. The effect of CGA-N12 on recombinant KRE9 β-1,6-glucanase activity was investigated by analyzing the consumption of glucose. The results showed that CGA-N12 inhibited the activity of KRE9. After C. tropicalis was treated with CGA-N12, the structure of the C. tropicalis cell wall was damaged. The interaction between CGA-N12 and KRE9 was analyzed by isothermal titration calorimetry (ITC). The results showed that their interaction process was involved an endothermic reaction, and the interaction force was mainly hydrophobic with a few electrostatic forces. The results of the fluorescence resonance energy transfer (FRET) assay showed that the distance between CGA-N12 and KRE9 was 7~10 nm during their interaction. Therefore, we concluded that the target of CGA-N12 in the C. tropicalis cell membrane is KRE9, and that CGA-N12 weakly binds to KRE9 within a 7~10 nm distance and inhibits KRE9 activity.