Batroxin I: A Novel Bradykinin-Potentiating Peptide with Cytotoxic Activity Isolated from Bothrops atrox Snake Venom

Cintra, Adélia Cristina Oliveira, et al. “Batroxin I: A novel bradykinin-potentiating peptide with cytotoxic activity isolated from Bothrops atrox snake venom.” International Journal of Peptide Research and Therapeutics 29.2 (2023): 20. https://doi.org/10.1007/s10989-023-10493-7

Abstract

Venom peptides are interesting molecular models for the development of biotechnological strategies applicable in generating therapeutic agents and/or experimental tools for basic and applied research. The present study aimed to search for peptides from Bothrops atrox snake venom with anticancer potential activity against HepG2 liver tumor cell line, determine their cytotoxic action, and analyze the structure–function relationship. The novel peptide Batroxin I (M.W. 1.38 kDa) was isolated by molecular exclusion and reversed phase chromatography methods. The Batroxin I presented a selective cytotoxicity towards tumor cells, reducing the viability of HepG2 cells by 94.6% with IC50 of 0.72 μg/mL, and showing a low toxicity against peripheral blood mononuclear cells. Analysis of the apoptotic and necrotic peptide effects revealed that it induced apoptosis by intrinsic pathway activation. The amino acid sequence of Batroxin I was determined by de novo sequencing as < EKWPRPDAPIPP (where < E = pyroglutamic acid); hence, it is an unpublished peptide that belongs to the class of bradykinin-enhancing peptides and cell penetration peptide. This is one of the first reports on the cytotoxic antitumor activity of a bradykinin-enhancing peptide. Our results indicate that this peptide could serve not only as a template for the development of new drugs, but also as an adjuvant to less effective marketed drugs to treat cancer and other diseases.